- #1
castlemaster
- 38
- 0
Homework Statement
We have a linear combination of eigenstates of observable A [tex]\Phi_+[/tex] and [tex]\Phi_-[/tex] with eigenstates a and -a. The expected value of the energy for both states is 0, while [tex](\Phi_+,H\Phi_-)=E[/tex], with E real. Calculate the expected value of A for eigenstates [tex]\Phi_+[/tex] and [tex]\Phi_-[/tex] over time.
Homework Equations
I guess
[tex](\Phi_+,H\Phi_+)=(\Phi_-,H\Phi_-)=0[/tex]
[tex](\Phi_+,H\Phi_-)=E[/tex]
[tex]\varphi=C_+\Phi_++C_-\Phi_-[/tex]
The Attempt at a Solution
I guess that for the given equations I have to obtain <H>
[tex]<H>=\varphi^*H\varphi=(C_+\Phi_++C_-\Phi_-)^*H(C_+\Phi_++C_-\Phi_-)=C_+^*C_+(\Phi_+^*,H\Phi_+)+C_-^*C_-(\Phi_-^*,H\Phi_-)+C_+^*C_-(\Phi_+^*,H\Phi_-)+C_-^*C_+(\Phi_-^*,H\Phi_+)[/tex]
Then I assume C's and [tex]\Phi[/tex]'s are real so
[tex]<H>=2C_+C_-E[/tex]
Now I have to compute this
[tex]<A>=(\varphi^*,A\varphi)[/tex]
How <H> plugs into the calculation of <A>?