- #1
compliant
- 45
- 0
Homework Statement
Given Y1 and Y2 are integer values, where 0[tex]\leq[/tex]Y1[tex]\leq[/tex]3, 0[tex]\leq[/tex]Y2[tex]\leq[/tex]3, 1[tex]\leq[/tex]Y1+Y2[tex]\leq[/tex]3
p(Y1, Y2) = [tex]\frac{{4 \choose y_1}{3 \choose y_2}{2 \choose {3-y_1-y_2}}}{{9 \choose 3}}[/tex]
Find E(Y1+Y2) and V(Y1+Y2)
Homework Equations
E(Y1+Y2) = E1(Y1)+E2(Y2)
E1(Y1) = [tex]\int_{-{\infty}}^{\infty} y_1 f(y_1) dy_1[/tex]
But that's for continuous variables, so I have no idea how to deal with discrete. Some guy tried explaining it to me, but it was just so unclear I didn't understand any of it.
Required use of these theorems:
Given U1 = [tex]\sum_{i=1}^n a_i*Y_i[/tex]
E(U1) = [tex]\sum_{i=1}^n a_i*E_i (Y_i)[/tex]
V(U1) = [tex]{\sum_{i=1}^n {a_i}^2*E_i (Y_i)}+2{\sum{\sum_{1{\leq{i}}<j{\leq{n}}} {a_i}^2*E_i (Y_i)}}[/tex]
The Attempt at a Solution
Well, first I did it the slow counting way involving counting,
P(Y1+Y2=1)
= [tex]\frac{{4 \choose 0}{3 \choose 1}{2 \choose {2}}}{{9 \choose 3}}[/tex] + [tex]\frac{{4 \choose 1}{3 \choose 0}{2 \choose {2}}}{{9 \choose 3}}[/tex]
= [tex]\frac {3+4}{84}[/tex]
= [tex]\frac {7}{84}[/tex]
P(Y1+Y2=2)
= [tex]\frac{{4 \choose 0}{3 \choose 2}{2 \choose {1}}}{{9 \choose 3}}[/tex] + [tex]\frac{{4 \choose 1}{3 \choose 1}{2 \choose {1}}}{{9 \choose 3}}[/tex] + [tex]\frac{{4 \choose 2}{3 \choose 0}{2 \choose {1}}}{{9 \choose 3}}[/tex]
= [tex]\frac {3(2)+4(3)(2)+6(2)}{84}[/tex]
= [tex]\frac {42}{84}[/tex]
P(Y1+Y2=3)
= [tex]\frac{{4 \choose 0}{3 \choose 3}{2 \choose {0}}}{{9 \choose 3}}[/tex] + [tex]\frac{{4 \choose 1}{3 \choose 2}{2 \choose {0}}}{{9 \choose 3}}[/tex] + [tex]\frac{{4 \choose 2}{3 \choose 1}{2 \choose {0}}}{{9 \choose 3}}[/tex] + [tex]\frac{{4 \choose 3}{3 \choose 0}{2 \choose {0}}}{{9 \choose 3}}[/tex]
= [tex]\frac {1+4(3)+6(3)+4)}{84}[/tex]
= [tex]\frac {35}{84}[/tex]
E(Y1+Y2) = P(Y1+Y2=1)+2P(Y1+Y2=2)+3P(Y1+Y2=3)
= [tex]{(1)}{\frac {7}{84}}+{(2)}{\frac {42}{84}}+{(3)}{\frac {35}{84}}[/tex]
= [tex]\frac {196}{84}[/tex]
= [tex]\frac {7}{3}[/tex]
But I'm supposed to be using the formula I listed above. So I have no idea how to deal with that.