- #36
- 22,183
- 3,325
In general:
[tex]e^{i\theta}=\cos(\theta)+i\sin(\theta)[/tex]
So
[tex]e^{2\pi i}=\cos(2\pi)+i\sin(2\pi)=1[/tex]
And
[tex]e^{(3+i)\pi}=e^{3\pi}e^{i\pi}=e^{3\pi}(\cos(\pi)+i\sin(\pi))=-e^{3\pi}[/tex]
I think this might be the root of your misunderstanding...
[tex]e^{i\theta}=\cos(\theta)+i\sin(\theta)[/tex]
So
[tex]e^{2\pi i}=\cos(2\pi)+i\sin(2\pi)=1[/tex]
And
[tex]e^{(3+i)\pi}=e^{3\pi}e^{i\pi}=e^{3\pi}(\cos(\pi)+i\sin(\pi))=-e^{3\pi}[/tex]
I think this might be the root of your misunderstanding...