Explain the Schrodinger equation

In summary, the Schrodinger wave equation in the quantum mechanics model of an atom is a mathematical tool that describes the behavior of particles on a quantum level. It involves the Laplace operator, which is a mathematical operator that measures the curvature of a function, and the Hamiltonian operator, which represents the total energy of the system. The wave function represents the probability of finding a particle at a certain position and time. However, understanding the Schrodinger wave equation requires knowledge of differential equations and basic calculus.
  • #1
Huzaifa
40
2
Homework Statement
Please explain in simple words, the meaning of the Schrodinger wave equation in the quantum mechanics model of atom.
Relevant Equations
$$\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}+\frac{8 \pi^{2} m}{h^{2}}(E-U) \psi=0$$
Please explain in simple words, the meaning of the Schrodinger wave equation in the quantum mechanics model of atom. $$\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}+\frac{8 \pi^{2} m}{h^{2}}(E-U) \psi=0$$
 
Physics news on Phys.org
  • #2
Welcome to PF. :smile:

We require that you show some effort on your schoolwork questions before we can offer tutorial help. What reading have you been doing about SE? What have you learned so far? What class is this for?

https://en.wikipedia.org/wiki/Schrödinger_equation
 
  • #3
$$
\nabla ^{2}\psi +\frac{8 \pi^{2} m}{h^{2}}(E-U) \psi=0
$$
$$
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}+\frac{8 \pi^{2} m}{h^{2}}(E-U) \psi=0
$$

I am not able to understand the Laplace operator and the wave function. I do not have the knowledge of
differential equations. In the time-independent Schrödinger equation for Hydrogen atom, HΨ = EΨ, where H is Hamiltonian operator.

Please explain Laplace operator Hamiltonian operator and wave function without differential equations. Thank you.
 
  • #4
You haven't answered the questions asked of you by @berkeman in Post#2 yet! And you haven't told us what you do understand - for example if you are familiar with basic calculus.
 
Back
Top