- #1
Benjamin_harsh
- 211
- 5
- Homework Statement
- Determine completely the resultant of the forces acting on the step pulley shown in this figure
- Relevant Equations
- ##M_{axle} = 250 (1.25) + 1250(0.5) − 750(1.25)##
##R_{X} = \sum F_{X}##
##R_{X} = 750.sin 60^{0} + 250##
##R_{X} = 899.52 N## to the right.
##R_{y} = \sum F_{y}##
##R_{y} = 750.cos 60^{0} - 1250##
##R_{y} = - 875 N##
##R_{y} = 875 N ## downward
##R = \sqrt {R_{x}^{2} + R_{y}^{2}}##
##R = 1254.89 N##
## tan θ_{X} = \large \frac {R_{y}}{R_{x}}##
## tan θ_{X} = \large \frac {875}{899.52}##
##θ_{x} = 44.21^{0}##
##M_{axle} = \sum M_{center}##
##M_{axle} = 250 (1.25) + 1250(0.5) − 750(1.25)##
##M_{axle} = 0##
Thus, ##R = 1254.89 N## downward to the right at ##θ_{x} = 44.21_{0}## and passes through the axle.