MHB Explaining Copper(2) Oxide Bonding & ECs

  • Thread starter Thread starter markosheehan
  • Start date Start date
  • Tags Tags
    Bonding
Click For Summary
Copper(II) oxide bonding involves copper losing two electrons, resulting in an electron configuration of 2-8-17 for copper and 2-8 for oxygen after bonding. The discussion highlights that while atoms generally seek full outer shells for stability, exceptions exist, particularly with copper, which can form stable compounds in multiple oxidation states. Copper(II) oxide is noted to be more stable than copper(I) oxide, despite not achieving a full outer shell. The conversation also touches on the complexity of electron configurations and the existence of stable bonding scenarios that do not conform to the typical full shell rule. Understanding these exceptions is crucial for grasping the nuances of chemical bonding.
markosheehan
Messages
133
Reaction score
0
Could someone explain the bonding of copper(2) oxide to me? What are each element's EC before and after?

i understand the copper has a variable valency and in this case it looses 2 electrons to make the overall charge 0. however i don't understand the electron configurations. coppers EC before is 2,8,8,8,3. it looses 2 electrons so it goes to 2,8,8,8,1 this is not stable and this doesn't make sense to me.
 
Mathematics news on Phys.org
The abbreviation EC has quite a few meanings in chemistry, can you be more clear about it please.

Anyway, copper (II) is a bit of an exception from memory. Try searching for why Cu(II) is stable.
 
markosheehan said:
Could someone explain the bonding of copper(2) oxide to me? What are each element's EC before and after?

i understand the copper has a variable valency and in this case it looses 2 electrons to make the overall charge 0. however i don't understand the electron configurations. coppers EC before is 2,8,8,8,3. it looses 2 electrons so it goes to 2,8,8,8,1 this is not stable and this doesn't make sense to me.

Hi markosheehan,

I'm assuming EC stands for Electron Configuration?

Before the bonding Copper has the configuration 2-8-18-1 (there are 18 electrons in the M valence shell) and Oxygen has 2-6.
After the bonding Copper has 2-8-17 and Oxygen has 2-8.

And indeed Copper doesn't have a 'nice' full shell.
There are some complicated answers out there about why that is, but long story short, in this particular case Copper(II) Oxide is more stable than Copper(I) Oxide.
 
thanks I like serena . that's what i was looking for.

i thought when bonding takes place atoms always want full outer shells? are there exceptions?
 
markosheehan said:
thanks I like serena . that's what i was looking for.

i thought when bonding takes place atoms always want full outer shells? are there exceptions?

There are many exceptions. I remember back in my first year chemistry course, my professor criticized the textbook for providing incorrect explanations to these exceptions. Most of the time these explanations go much beyond the scope of general chemistry courses, so I wouldn't worry about them.
 
markosheehan said:
thanks I like serena . that's what i was looking for.

i thought when bonding takes place atoms always want full outer shells? are there exceptions?

Yes, there are exceptions.
Most elements have a stable bonding with a full outer shell, but they typically also have alternative stable bondings.
For instance $CO$ and $CO_2$ are both stable, and $CO_2$ is the one where $C$ has a full outer shell.
Copper is apparently one of the exceptions where the bonding with a full outer shell ($Cu^+$) is less stable than other bondings ($Cu^{2+}$ and $Cu^{3+}$). Note that Copper also has a stable Copper(III) Oxide binding.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 22 ·
Replies
22
Views
10K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 36 ·
2
Replies
36
Views
6K