- #1
lukka98
- 30
- 1
Without mathematical formulas, but only with a "Physical intuitive meaning", why if at t=0, I have a charged capacitor, and I connect it through a wire ,forming a closed path, to a inductor the current increasing with time and his derivative decreasing?
To me seems like the inductor oppose "to the flow" at maximum initially, and then it allow the current to flow greater and greater but with slow increasing until its maximum, then the current cannot drop down instantly to zero so an emf rising and with decreasing current charge the capacitor but opposite in sign, and then the cycle continue.
I can say is just a conservation of energy between magnetic(L) and potential(C), but I cannot understand why the current has the behavior it has.
I said with no formulas because I have understand how to find all about LC with math, but I don't understand how happen physically.
thanks.
To me seems like the inductor oppose "to the flow" at maximum initially, and then it allow the current to flow greater and greater but with slow increasing until its maximum, then the current cannot drop down instantly to zero so an emf rising and with decreasing current charge the capacitor but opposite in sign, and then the cycle continue.
I can say is just a conservation of energy between magnetic(L) and potential(C), but I cannot understand why the current has the behavior it has.
I said with no formulas because I have understand how to find all about LC with math, but I don't understand how happen physically.
thanks.