Explicit Formula for the nth Fibonacci Number

In summary, by using the method of partial fractions and Heaviside's method, an explicit formula for the nth Fibonacci number, F_n, can be obtained as F_n = \frac{1}{\sqrt{5}} \sum _{n=0} ^{\infty} \left[ \left( \frac{1+\sqrt{5}}{2} \right) ^n - \left( \frac{1-\sqrt{5}}{2} \right) ^n \right] x^n.
  • #1
DivGradCurl
372
0
Problem

[tex] f(x) = \frac{x}{1-x-x^2} = \sum _{n=1} ^{\infty} f_n x^n [/tex]

By writing [tex]f(x)[/tex] as a sum of partial fractions, find an explicit formula for the nth Fibonacci number.

My work

[tex]\frac{x}{1-x-x^2} = \frac{-4}{(2x + \sqrt{5} + 1)(2x - \sqrt{5} + 1)} = \frac{A}{2x + \sqrt{5} + 1} + \frac{B}{2x - \sqrt{5} + 1} [/tex]

Heaviside's method gives:

[tex] \left. \frac{-4}{2x - \sqrt{5} + 1} = A + \frac{B(2x + \sqrt{5} + 1)}{2x - \sqrt{5} + 1} \right] _{x= -\frac{(\sqrt{5}+1)}{2}} \Longrightarrow A = \frac{2}{\sqrt{5}} [/tex]

[tex] \left. \frac{-4}{2x + \sqrt{5} + 1} = \frac{A(2x - \sqrt{5} + 1)}{2x + \sqrt{5} + 1} + B \right] _{x= \frac{\sqrt{5}-1}{2}} \Longrightarrow B = -\frac{2}{\sqrt{5}} [/tex]

Thus,

[tex] f(x) = \frac{2}{\sqrt{5}} \left( \frac{1}{2x + \sqrt{5} + 1} - \frac{1}{2x - \sqrt{5} + 1} \right) [/tex]

Then

[tex] (2x - \sqrt{5} + 1)^{-1} = \frac{1}{1-\sqrt{5}}\left( 1 + \frac{2x}{1-\sqrt{5}} \right) ^{-1} = \frac{1}{1-\sqrt{5}} \sum _{n=0} ^{\infty} \binom{-1}{n} \left( \frac{2x}{1-\sqrt{5}} \right) ^n = \sum _{n=0} ^{\infty} \frac{(-1)^n 2^n}{\left( 1-\sqrt{5}} \right) ^{n+1}}x^n [/tex]

[tex] (2x + \sqrt{5} + 1)^{-1} = \frac{1}{\sqrt{5}+1}\left( 1 + \frac{2x}{\sqrt{5}+1} \right) ^{-1} = \frac{1}{\sqrt{5}+1} \sum _{n=0} ^{\infty} \binom{-1}{n} \left( \frac{2x}{\sqrt{5}+1} \right) ^n = \sum _{n=0} ^{\infty} \frac{(-1)^n 2^n}{\left( \sqrt{5}+1} \right) ^{n+1}}x^n [/tex]

[tex]f(x) = \frac{2}{\sqrt{5}} \left\{ \sum _{n=0} ^{\infty} \left[ \frac{(-1)^n 2^n}{\left( \sqrt{5}+1} \right) ^{n+1}}x^n \right] - \sum _{n=0} ^{\infty} \left[ \frac{(-1)^n 2^n}{\left( 1-\sqrt{5}} \right) ^{n+1}}x^n \right] \right\} [/tex]

What else can I do?

Thanks
 
Last edited:
Physics news on Phys.org
  • #2
Find a way to combine the two sums into one. :-p
 
  • #3
Yes, I'm a bit confused with such a trivial thing. Let me show you why...

[tex]f(x) = \frac{1}{\sqrt{5}} \sum _{n=0} ^{\infty} \left[ (-1)^n \left( \frac{2}{ \sqrt{5}+1}} \right) ^{n+1} + (-1)^{n+1} \left( \frac{ 2}{1-\sqrt{5}}}\right) ^{n+1} \right] x^n [/tex]

I've tested my guess, but it doesn't work. I'm having difficulty combining the changing signs. Could you please explain that? Probably, it's just a lapse. :smile:

Thanks
 
  • #4
Then one of your intermediate steps is wrong! Can you think of a good way to test them?

BTW, unless I've made an arithmetic error, your final answer works for me...

(but yes, one of your intermediate steps is wrong)
 
Last edited:
  • #5
Redo all your calculations,beginning with the first line,namely the partial fraction decomposition where u miss the "x".That's why you could't retrieve this formula
where u need to get,formulas #6 & #13

Daniel.

P.S.Try to put the radicals to the numerator...
 
  • #6
HAHAHAHA

Had to prove this in my exam today, it is so much easier than that but I don't know how to help without giving it all away :confused:
 
  • #7
Zurtex said:
HAHAHAHA

Had to prove this in my exam today, it is so much easier than that but I don't know how to help without giving it all away :confused:

Happy Birthday,Zurtex!And yes,you're right,let's let him do the calculations... :smile:


Daniel.
 
  • #8
I couldn't find a way to have the radicals just in the numerator, but here is what I now have:

[tex]f(x) = \frac{x}{1-x-x^2} = \frac{-4x}{(2x + \sqrt{5} + 1)(2x - \sqrt{5} + 1)} = \frac{A}{2x + \sqrt{5} + 1} + \frac{B}{2x - \sqrt{5} + 1} [/tex]

Heaviside's method gives:

[tex] \left. \frac{-4x}{2x - \sqrt{5} + 1} = A + \frac{B(2x + \sqrt{5} + 1)}{2x - \sqrt{5} + 1} \right] _{x= -\frac{(\sqrt{5}+1)}{2}} \Longrightarrow A = \frac{-\sqrt{5}}{5}-1 [/tex]

[tex] \left. \frac{-4x}{2x + \sqrt{5} + 1} = \frac{A(2x - \sqrt{5} + 1)}{2x + \sqrt{5} + 1} + B \right] _{x= \frac{\sqrt{5}-1}{2}} \Longrightarrow B = \frac{\sqrt{5}}{5}-1 [/tex]

Then

[tex]f(x) = \left( \frac{-\sqrt{5}}{5}-1 \right) \sum _{n=0} ^{\infty} \left[ \frac{(-1)^n 2^n}{\left( \sqrt{5}+1} \right) ^{n+1}}x^n \right] + \left( \frac{\sqrt{5}}{5}-1 \right) \sum _{n=0} ^{\infty} \left[ \frac{(-1)^n 2^n}{\left( 1-\sqrt{5}} \right) ^{n+1}}x^n \right] [/tex]

Thanks for pointing it out
 
  • #9
Sorry,i was referring to the last line.The last formula should be "adjusted" as to resemble the famous one which appears on the "wolfram" site...

Daniel.
 
  • #10
I couldn't find a way to have the radicals just in the numerator, but here is what I now have:

You recall the method of rationalizing the denominator?
 
  • #11
I've just confirmed what I said earlier... memory lapse :smile:. Anyway...

[tex]f(x) = \frac{x}{1-x-x^2} = \frac{-4x}{(2x + \sqrt{5} + 1)(2x - \sqrt{5} + 1)} = -4x \left( \frac{2x-\sqrt{5}+1}{4x^2 + 4x -4} \right) \left( \frac{2x+\sqrt{5}+1}{4x^2 + 4x -4} \right) = \frac{-4x}{4x^2 + 4x -4} [/tex]

[tex]f(x) = -4x \left\{ \frac{1}{4x(x+1)} \left[ 1 - \frac{1}{x(x+1)} \right] ^{-1} \right\} = \frac{-1}{x+1} \sum _{n=0} ^{\infty} \binom{-1}{n} \left[ \frac{-1}{x(x+1)} \right] ^n = - \sum _{n=0} ^{\infty} \frac{1}{x^n (x+1)^{n+1}} [/tex]

There probably is something else that I miss here. :smile:
 
Last edited:
  • #12
What did u do here?Where did the radicals go...??

Daniel.
 
  • #13
I did not use partial fractions at all in my previous post, which is not what I intended to do. By the way, I finally have the solution. :-p

[tex]f(x) = \frac{x}{1-x-x^2} = \frac{-4x}{(2x + \sqrt{5} + 1)(2x - \sqrt{5} + 1)} = \frac{A}{2x + \sqrt{5} + 1} + \frac{B}{2x - \sqrt{5} + 1} [/tex]

Heaviside's method gives:

[tex] \left. \frac{-4x}{2x - \sqrt{5} + 1} = A + \frac{B(2x + \sqrt{5} + 1)}{2x - \sqrt{5} + 1} \right] _{x= -\frac{(\sqrt{5}+1)}{2}} \Longrightarrow A = \frac{-\sqrt{5}}{5}-1 [/tex]

[tex] \left. \frac{-4x}{2x + \sqrt{5} + 1} = \frac{A(2x - \sqrt{5} + 1)}{2x + \sqrt{5} + 1} + B \right] _{x= \frac{\sqrt{5}-1}{2}} \Longrightarrow B = \frac{\sqrt{5}}{5}-1 [/tex]

Also consider

[tex] (2x + \sqrt{5} + 1) ^{-1} = \frac{1}{\sqrt{5}+1} \left( 1 + \frac{2x}{\sqrt{5}+1} \right) ^{-1} = \frac{\sqrt{5}-1}{4} \sum _{n=0} ^{\infty} \binom{-1}{n} \left( \frac{2x}{\sqrt{5}+1} \right) ^n = \frac{\sqrt{5}-1}{4} \sum _{n=0} ^{\infty} \left( \frac{1-\sqrt{5}}{2} \right) ^n x^n [/tex]

and

[tex] (2x - \sqrt{5} + 1) ^{-1} = \frac{1}{1-\sqrt{5}} \left( 1 + \frac{2x}{1-\sqrt{5}} \right) ^{-1} = \frac{-\left( 1 + \sqrt{5} \right)}{4} \sum _{n=0} ^{\infty} \binom{-1}{n} \left[ \frac{-\left( 1 + \sqrt{5} \right)}{2} x \right] ^n = \frac{-\left( 1 + \sqrt{5} \right)}{4} \sum _{n=0} ^{\infty} \left( \frac{1+\sqrt{5}}{2} \right) ^n x^n [/tex]

which allows us to obtain

[tex]f(x) = \frac{A}{2x + \sqrt{5} + 1} + \frac{B}{2x - \sqrt{5} + 1} = \left( \frac{-\sqrt{5}}{5}-1 \right) \left( \frac{\sqrt{5}-1}{4} \right) \sum _{n=0} ^{\infty} \left[ \left( \frac{1-\sqrt{5}}{2} \right) ^n x^n \right] + \left( \frac{\sqrt{5}}{5}-1 \right) \left[ \frac{-\left( 1 + \sqrt{5} \right)}{4} \right] \sum _{n=0} ^{\infty} \left[ \left( \frac{1+\sqrt{5}}{2} \right) ^n x^n \right] [/tex]

[tex]f(x) = \frac{-1}{\sqrt{5}} \sum _{n=0} ^{\infty} \left[ \left( \frac{1-\sqrt{5}}{2} \right) ^n x^n \right] + \frac{1}{\sqrt{5}} \sum _{n=0} ^{\infty} \left[ \left( \frac{1+\sqrt{5}}{2} \right) ^n x^n \right] = \frac{1}{\sqrt{5}} \sum _{n=0} ^{\infty} \left[ \left( \frac{1+\sqrt{5}}{2} \right) ^n - \left( \frac{1-\sqrt{5}}{2} \right) ^n \right] x^n [/tex]

Hence, we find

[tex] F_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1+\sqrt{5}}{2} \right) ^n - \left( \frac{1-\sqrt{5}}{2} \right) ^n \right] [/tex]

And again, thank you guys for all the help!
 

FAQ: Explicit Formula for the nth Fibonacci Number

What is the Explicit Formula for the nth Fibonacci Number?

The explicit formula for the nth Fibonacci number is Fn = [(1+√5)^n - (1-√5)^n] / (2^n √5), where n is the desired position in the Fibonacci sequence.

How is the Explicit Formula derived?

The explicit formula for the nth Fibonacci number is derived using the Binet's formula, which is based on the concept of generating functions and the golden ratio.

What is the significance of the Explicit Formula for the nth Fibonacci Number?

The explicit formula allows for a quick and efficient way to calculate any term in the Fibonacci sequence, without having to go through each term individually. It also provides a mathematical explanation for the growth pattern of the Fibonacci sequence.

Are there any limitations to the Explicit Formula for the nth Fibonacci Number?

The explicit formula may not accurately calculate the nth Fibonacci number for very large values of n, as rounding errors and finite precision may affect the accuracy of the result. Additionally, the formula only works for positive integer values of n.

How is the Explicit Formula for the nth Fibonacci Number used in real-world applications?

The explicit formula for the nth Fibonacci number has various applications in mathematics, computer science, and engineering. It can be used in algorithms for data compression, cryptography, and optimization problems. It is also used in predicting population growth and in analyzing the efficiency of certain algorithms.

Back
Top