- #1
greg_rack
Gold Member
- 363
- 79
Hello guys,
I am getting more and more confused each time I try to get a definitive answer on this doubt: what's the acceleration at the contact point between a surface and a wheel spinning on it(without slipping).
Considering this standard FBD for the above-described situation,
(the direction of friction is just assumed to be as such)
are we able to know a-priori the acceleration at the contact point(let's say A)?
Intuitively I wouldn't say so, since instantaneously point A is moving at 0 velocity but about to change it; so how could the acceleration be also 0? My guess is, thus, that it should be calculated using the relative motion equations derived for rigid bodies.
But often, a necessary kinematic conditions for such problems is to assume ##a_A=0##, and in some textbooks it is explicitly stated but, in my opinion, without further clarifications... almost as a given, but which for me, sounds all but a given :)
I'd be glad if you help me clarify this once and for all; also, what happens exactly to the velocity at A? Is it really 0 at that moment?
I am getting more and more confused each time I try to get a definitive answer on this doubt: what's the acceleration at the contact point between a surface and a wheel spinning on it(without slipping).
Considering this standard FBD for the above-described situation,
(the direction of friction is just assumed to be as such)
are we able to know a-priori the acceleration at the contact point(let's say A)?
Intuitively I wouldn't say so, since instantaneously point A is moving at 0 velocity but about to change it; so how could the acceleration be also 0? My guess is, thus, that it should be calculated using the relative motion equations derived for rigid bodies.
But often, a necessary kinematic conditions for such problems is to assume ##a_A=0##, and in some textbooks it is explicitly stated but, in my opinion, without further clarifications... almost as a given, but which for me, sounds all but a given :)
I'd be glad if you help me clarify this once and for all; also, what happens exactly to the velocity at A? Is it really 0 at that moment?
Last edited: