- #1
PhysicsRock
- 117
- 18
So, I've recently played around a little with the Gamma Function and eventually managed to find an expression for the Beta Function I have not yet seen. So I'm asking you guys, if you've ever seen this expression somewhere or if this is a new thing. Would be cool if it was, so here's the formula:
$$
B(x,y) = \frac{\Gamma(x)}{x} \cdot \left( \sum_{k=1}^{y} \frac{\Gamma(x+y-k)}{\Gamma(y-k+1)} \right)^{-1}
$$
Obviously, this only works for non-negative integer pairs of ##x## and ##y##. Still pretty interesting I think.
$$
B(x,y) = \frac{\Gamma(x)}{x} \cdot \left( \sum_{k=1}^{y} \frac{\Gamma(x+y-k)}{\Gamma(y-k+1)} \right)^{-1}
$$
Obviously, this only works for non-negative integer pairs of ##x## and ##y##. Still pretty interesting I think.