- #1
Stephen88
- 61
- 0
I'm trying to list the cosets of the following ring and describe the relations that hold between these cosets.
R=Z_4[x]/((x^2+1)*Z_4[x])
I'm using the division algorithm since x^2+1 is monic in the ring Z_4[x].Now for every f that belongs to Z_4[x] by the division algorithm
f=(x^2+1)q(x)+p(x)=>the cosets are of the the form...a*x+b+I where I is an ideal generated by x^2+1.
x^2+1=0 in the quotient=>a new ring where multiplication between cosets A+I and B+I is is defined by (A+I)(B+I)=(AB)+1 where the relation x^2+1=0 exists
Is is ok?[FONT=MathJax_Math][/FONT][FONT=MathJax_Main][/FONT][FONT=MathJax_Main][/FONT][FONT=MathJax_Main][/FONT][FONT=MathJax_Math][/FONT][FONT=MathJax_Math][/FONT][FONT=MathJax_Main][/FONT][FONT=MathJax_Main][/FONT][FONT=MathJax_Math][/FONT]
R=Z_4[x]/((x^2+1)*Z_4[x])
I'm using the division algorithm since x^2+1 is monic in the ring Z_4[x].Now for every f that belongs to Z_4[x] by the division algorithm
f=(x^2+1)q(x)+p(x)=>the cosets are of the the form...a*x+b+I where I is an ideal generated by x^2+1.
x^2+1=0 in the quotient=>a new ring where multiplication between cosets A+I and B+I is is defined by (A+I)(B+I)=(AB)+1 where the relation x^2+1=0 exists
Is is ok?[FONT=MathJax_Math][/FONT][FONT=MathJax_Main][/FONT][FONT=MathJax_Main][/FONT][FONT=MathJax_Main][/FONT][FONT=MathJax_Math][/FONT][FONT=MathJax_Math][/FONT][FONT=MathJax_Main][/FONT][FONT=MathJax_Main][/FONT][FONT=MathJax_Math][/FONT]