- #1
sol47739
- 38
- 3
- TL;DR Summary
- I have some questions about accelerating charges and how a radio antenna would be explained in quantum mechanical terms.
In classical electromagnetism I think I have understood the following(please correct me if something is wrong): A charge produces an electric field, a charge moving with constant velocity produces a magnetic field, an accelerating charge emits electromagnetic radiation. In radio antennas this is used to make electrons accelerate back and forth, this back and forth acceleration of electrons produces an electromagnetic wave, which propagates through space and when arriving to the receiver make the electrons move in a corresponding way in the receiver, and the motion of these electrons gets then converted into sound waves.In quantum mechanics electrons can only emit photons, which are quantized packets of energy. An electron either emits or not, it is not a continuously electromagnetic wave that is emitted. I wonder how would a radio antenna that emits and a receiver be explained in quantum mechanical terms? What makes the signal still being so smooth, and exactly what is it in the antenna that emits photons giving the appearance of a smooth wave? Also in quantum mechanics if an electron is accelerating, in which manner does it emit it’s photons? Like in a synchrotron does the electron emit photons continuously all the time or just a very frequently spontaneous emission process?To summarize what I want to know: In which manner does an unbound accelerating electron emit photons? And how does a radio antenna work from a quantum mechanical perspective?