- #1
ognik
- 643
- 2
Given $ x^2y'' + xy' - n^2y = 0 $
I think this is an Euler ODE, so I try $y=x^p, \therefore y'=p x^{p-1}, \therefore y''= p (p-1) x^{p-2}$
Substituting: $x^p p(p-1) + x^p p - n^2 x^p = 0, \therefore p^2 = n^2, \therefore p= \pm n$
$ \therefore y=C_1 x^n + C_2 x^{-n} $?
I think this is an Euler ODE, so I try $y=x^p, \therefore y'=p x^{p-1}, \therefore y''= p (p-1) x^{p-2}$
Substituting: $x^p p(p-1) + x^p p - n^2 x^p = 0, \therefore p^2 = n^2, \therefore p= \pm n$
$ \therefore y=C_1 x^n + C_2 x^{-n} $?