Exploring Intriguing Integrals

  • MHB
  • Thread starter polygamma
  • Start date
  • Tags
    Integrals
In summary: + \frac{1}{2} \sqrt{\frac{\pi}{2}} \big( \sin(2)+\cos(2)\big)$$ = \displaystyle \sqrt{\frac{\pi}{2}} \big( \sin(2)+\cos(2)\big) = \sin(2)+\cos(2)$
  • #1
polygamma
229
0
Here's an eclectic bunch.1) $ \displaystyle \int_{0}^{\infty} \frac{x^{2}}{(1+x^{5})(1+x^{6})} \ dx $2) $ \displaystyle \int_{0}^{\infty} \frac{1}{(1+x^{\varphi})^{\varphi}} \ dx $ where $\varphi$ is the golden ratio3) $ \displaystyle \int_{0}^{\infty} \sin \left(x^{2} + \frac{1}{x^{2}} \right) \ dx $4) $ \displaystyle \int_{0}^{\infty} e^{-x} \text{erf}(\sqrt{x}) \ dx $ where $\text{erf}(x)$ is the error function5) $\displaystyle \int_{0}^{2 \pi} \cos (\cos x) \cosh (\sin x) \ dx $
 
Mathematics news on Phys.org
  • #2
Random Variable said:
1) $ \displaystyle \int_{0}^{\infty} \frac{x^{2}}{(1+x^{5})(1+x^{6})} \ dx $
Sub $x = \tan(t)$, then $\displaystyle I = \int_{0}^{\pi/2}\frac{\tan^2{t}~\sec^2{t}}{\left(1+\tan^{6}{t} \right)\left(1+\tan^5{t}\right)}\;{dt}.$ Sub $t \mapsto \frac{\pi}{2}-t$, then $ \displaystyle I = \int_{0}^{\pi/2}\frac{\tan^2{t}~\cot^2{t}}{\left(1+\cot^{6}{t} \right)\left(1+\cot^5{t}\right)}\;{dt}.$ Then by adding $\displaystyle 2I = \int_{0}^{\pi/2}\frac{2\sin^2{2t}}{3\cos{4t}+5}\;{dt} = \int_{0}^{\pi/2}\frac{1}{1+4\cot^2{2t}}\;{dt}$. Sub $t = \tan^{-1}{\ell}$ then $ \displaystyle I = \frac{1}{2}\int_{0}^{\infty}\frac{\ell^2}{\ell^6+1}\;{d\ell}$. Sub $y = \ell^3$ then $ \displaystyle I = \frac{1}{6}\int_{0}^{\infty}\frac{1}{y^2+1}\;{dy} = \frac{\pi}{12}.$
 
Last edited:
  • #3
Nice Problems!
Random Variable said:
2) $ \displaystyle \int_{0}^{\infty} \frac{1}{(1+x^{\varphi})^{\varphi}} \ dx $ where $\varphi$ is the golden ratio

Consider \( I(a)=\displaystyle \int_{0}^{\infty} \frac{1}{(1+x^{a})^{a}} \ dx \)

\( I(a)=\displaystyle \int_{0}^{\infty} \left( \frac{1}{1+x^{a}} \right)^a dx \)

By the substitution \(\displaystyle u=\frac{1}{1+x^a} \) we obtain:

\( \displaystyle I(a)=\frac{1}{a}\int_{0}^{1}u^a \left( \frac{1}{u} \right)^2 \left( \frac{1}{u}-1\right)^{\frac{1}{a}-a}du=\frac{1}{a}\int_{0}^{1}u^{a-\frac{1}{a}-1}(1-u)^{\frac{1}{a}-1} du=\frac{\Gamma{\left( a-\frac{1}{a}\right)}\Gamma{\left( \frac{1}{a}\right)}}{a\Gamma{\left(a \right)}}\)

Therefore \( \displaystyle I(\varphi)= \frac{\Gamma{\left( \varphi-\frac{1}{\varphi}\right)}\Gamma{\left( \frac{1}{\varphi}\right)}}{\varphi\Gamma{\left( \varphi \right)}} \)

It is known that \( \displaystyle \frac{1}{\varphi}=\varphi-1 \).

So finally we get \( \displaystyle I(\varphi)=\frac{\Gamma(1)\Gamma(\varphi-1)}{\varphi \Gamma(\varphi)}= \dfrac{\Gamma(\varphi-1)}{\varphi \Gamma(\varphi)}=\boxed{1}\)
 
Last edited:
  • #4
sbhatnagar said:
So finally we get \( \displaystyle I(\varphi)=\frac{\Gamma(1)\Gamma(\varphi-1)}{\varphi \Gamma(\varphi)}= \boxed{\dfrac{\Gamma(\varphi-1)}{\varphi \Gamma(\varphi)}}\)
Which is 1. (Rofl)

I think there should be a clever way of doing this without employing the gamma function!
 
  • #5
Another approach for the first one is to let $\displaystyle x = \frac{1}{u}$.

My approach to the second one was the same as sbhatnagar except I immediately used $ \displaystyle \int_{0}^{\infty} \frac{1}{(1+x^{a})^{b}} \ dx = \frac{1}{a} B \left (\frac{1}{a},b- \frac{1}{a} \right) $
 
  • #6
Problem 5

Let \(\displaystyle I= \int_{0}^{2 \pi} \cos (\cos x) \cosh (\sin x) \ dx \)

Note that:

\( \displaystyle \cos (\cos x) \cosh (\sin x) = \left(\frac{e^{i\cos{x}}+e^{-i\cos{x}}}{2}\right) \left( \frac{e^{\sin{x}}+e^{-\sin{x}}}{2}\right) = \cdots=\frac{\cos(e^{ix})+\cos{(e^{-ix}})}{2} \)\( \displaystyle I=\int_{0}^{2\pi} \frac{\cos(e^{ix})+\cos{(e^{-ix}})}{2} dx=\frac{1}{2} \int_{0}^{2\pi}\cos(e^{ix})+\cos{(e^{-ix}}) \ dx \)

Let \( \displaystyle I_1=\int_{0}^{2\pi} \cos(e^{ix})dx \) and \( \displaystyle I_2=\int_{0}^{2\pi} \cos(e^{-ix})dx \)

\( \displaystyle \begin{align*} I_1 &=\int_{0}^{2\pi} \cos(e^{ix})dx \\ &= \int_{0}^{2\pi} \Big( 1-\frac{e^{2ix}}{2!}+\frac{e^{4ix}}{4!}-\cdots \Big) dx \\ &= 2\pi-0 \\ &= 2\pi\end{align*} \)

\( \displaystyle \begin{align*} I_2 &=\int_{0}^{2\pi} \cos(e^{-ix})dx \\ &= \int_{0}^{2\pi} \Big( 1-\frac{e^{-2ix}}{2!}+\frac{e^{-4ix}}{4!}-\cdots \Big) dx \\ &= 2\pi-0 \\ &= 2\pi\end{align*} \)

Therefore \( \displaystyle I=\frac{I_1+I_2}{2}=\frac{4\pi}{2}= \boxed{2\pi} \)
 
  • #7
Again my solution is similar to sbhatnagar's.

$\displaystyle \cos (\cos x) \cosh (\sin x) = \text{Re} \ \cos (e^{ix}) $

So $\displaystyle \int_{0}^{2 \pi} \cos (\cos x) \cosh (\sin x) \ dx = \text{Re} \int_{0}^{2 \pi} \cos (e^{ix}) \ dx $

$ \displaystyle \text{Re} \int\limits_{|z|=1} \frac{\cos (z)}{iz} \ dz = \text{Re} \ 2 \pi \ \text{Res} \ \left[\frac{\cos (z)}{z}, 0 \right] = 2 \pi (1) = 2 \pi$
 
  • #8
Here's mine for the first

Let $\displaystyle I = \int_0^{\infty} \dfrac{x^2}{(1+x^5)(1+x^6)}dx$

Then under a change of variable $x \to 1/x$ gives

$\displaystyle I = \int_0^{\infty} \dfrac{x^7}{(1+x^5)(1+x^6)}dx$

Then adding gives

$\displaystyle 2I = \int_0^{\infty} \dfrac{x^2 +x^7}{(1+x^5)(1+x^6)}dx =\int_0^{\infty} \dfrac{x^2}{1+x^6}dx = \dfrac{\pi}{6} $

Solving for I gives $\pi/12$ and stated earlier.
 
  • #9
My solution to (3)

Let $\displaystyle I= \int_0^{\infty} \sin \left(x^2+\dfrac{1}{x^2}\right)dx$

Let $x \to \dfrac{1}{x}$ gives

$\displaystyle I= \int_0^{\infty} \dfrac{1}{x^2}\sin \left(x^2+\dfrac{1}{x^2}\right)dx$

Adding gives

$\displaystyle 2 I= \int_0^{\infty}\left( 1 + \dfrac{1}{x^2}\right) \sin \left(x^2+\dfrac{1}{x^2}\right)dx$

Now split the integral up into the following two

$\displaystyle 2 I= \int_0^{1}\left( 1 + \dfrac{1}{x^2}\right) \sin \left(x^2+\dfrac{1}{x^2}\right)dx + \int_1^{\infty}\left( 1 + \dfrac{1}{x^2}\right) \sin \left(x^2+\dfrac{1}{x^2}\right)dx$

Under the change of variable $x \to \dfrac{1}{x}$ the second integral becomes the first so we have

$\displaystyle I= \int_0^{1}\left( 1 + \dfrac{1}{x^2}\right) \sin \left(x^2+\dfrac{1}{x^2}\right)dx $

Now let $u =\dfrac{1}{x} - x$ so

$\displaystyle I = \int_0^{\infty} \sin (u^2 + 2)du = \sin 2 \int_0^{\infty}\cos u^2 \;du + \cos 2 \int_0^{\infty} \sin u^2 =\sqrt{\dfrac{\pi}{2}}\left( \sin 2 + \cos 2\right)$.
 
  • #10
And (4), if we re-write the integral

$\displaystyle \int_0^{\infty} e^{-x} \text{erf} \sqrt{x} dx = \frac{2}{\sqrt{\pi}}\int_0^{\infty} \int_0^{\sqrt{x}} e^{-x} e^{-y^2} dy dx$

Reversing the order of integration gives

$\displaystyle \frac{2}{\sqrt{\pi}}\int_0^{\infty} \int_{y^2}^{\infty} e^{-x} e^{-y^2} dx dy = \frac{2}{\sqrt{\pi}}\int_0^{\infty} e^{-2y^2} dy= \frac{2}{\sqrt{\pi}} \frac{\sqrt{2\pi}}{4} = \frac{1}{\sqrt{2}}$
 
  • #11
Another solution to the third integral.

$ \displaystyle \int_{0}^{\infty} \sin \left( x^{2}+ \frac{1}{x^{2}} \right) \ dx = \int_{0}^{\infty} \sin \Bigg( \Big( x - \frac{1}{x} \Big)^{2} +2 \Bigg) \ dx $

$ \displaystyle = \sin(2) \int_{0}^{\infty} \cos \Bigg( \Big(x-\frac{1}{x} \Big)^{2} \Bigg) \ dx + \cos(2) \int_{0}^{\infty} \sin \Bigg( \Big(x-\frac{1}{x} \Big)^{2} \Bigg) \ dx$$ \displaystyle \int_{0}^{\infty} f \Bigg( \Big(ax - \frac{b}{x} )\Big)^2 \Bigg) \ dx = \frac{1}{b} \int_{0}^{\infty} f (u^{2}) \ du \ \ a,b>0$so $ \displaystyle \int_{0}^{\infty} \sin \left( x^{2}+ \frac{1}{x^{2}} \right) \ dx= \sin(2) \int_{0}^{\infty} \cos (x^{2}) \ dx + \cos(2) \int_{0}^{\infty} \sin (x^{2}) \ dx$

$ = \displaystyle \frac{1}{2} \sqrt{\frac{\pi}{2}} \big( \sin(2)+\cos(2)\big) $
 
Last edited:
  • #12
Danny said:
Now split the integral up into the following two

$\displaystyle 2 I= \int_0^{1}\left( 1 + \dfrac{1}{x^2}\right) \sin \left(x^2+\dfrac{1}{x^2}\right)dx + \int_1^{\infty}\left( 1 + \dfrac{1}{x^2}\right) \sin \left(x^2+\dfrac{1}{x^2}\right)dx$
Note that in both cases you could've applied that ${x^2} + \dfrac{1}{{{x^2}}} = {\left( {x - \dfrac{1}{x}} \right)^2} + 2.$ So it's a bit shorter.

Didn't see previous post, but that is.
 
  • #13
@Random Variable: These are very entertaining problems. Can I ask you where are these from? :)
 
  • #14
The first two and the last one I saw posted on the Art of Problem Solving forums a long time ago. I don't remember where I originally saw the third one. And the fourth one is on most Laplace transform tables. I have a notebook of hundreds.
 
  • #15
Markov said:
Note that in both cases you could've applied that ${x^2} + \dfrac{1}{{{x^2}}} = {\left( {x - \dfrac{1}{x}} \right)^2} + 2.$ So it's a bit shorter.

Didn't see previous post, but that is.
i can't get it
 
  • #16
oasi said:
i can't get it

Why not? Do you know how to multiply?

$$\begin{align*} \left( x-\frac{1}{x}\right)^2+2 &=x^2+\frac{1}{x^2}-2+2 \\ &= x^2+\frac{1}{x^2}\end{align*}$$
 

FAQ: Exploring Intriguing Integrals

What is "Exploring Intriguing Integrals"?

"Exploring Intriguing Integrals" is a book written by renowned mathematician Paul J. Nahin that delves into the fascinating world of integrals. It presents a collection of interesting and challenging integrals, along with their solutions and explanations, making it a valuable resource for those interested in advanced mathematics.

Who is the target audience for this book?

The book is aimed at anyone with a basic understanding of calculus who wants to explore more complex and intriguing integrals. It can be useful for students, researchers, and anyone with a passion for mathematics.

What makes this book unique?

This book stands out as it not only provides solutions to challenging integrals, but also offers insights into the reasoning and techniques behind these solutions. It also includes interesting historical anecdotes and real-world applications of the integrals discussed.

Can this book be used as a textbook?

While this book can be used as a supplement to a calculus course, it is not intended to be a textbook. It is more suitable for self-study or as a reference for those interested in exploring integrals beyond what is typically covered in a calculus class.

Are there any prerequisites for reading this book?

A basic understanding of calculus, including integration techniques, is necessary to fully appreciate the content of this book. Some knowledge of complex numbers and differential equations may also be helpful in understanding some of the more advanced integrals presented.

Similar threads

Replies
4
Views
1K
Replies
13
Views
956
Replies
1
Views
917
Replies
2
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
1
Views
10K
Back
Top