- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
In the notes of computability theory, I found the following:
$$q \sim_0 q' (\text{ q, q' are 0-equivalent}) \Leftrightarrow \text{For each input, q,q' have the same output} $$
$$q \sim_k q' (\text{ q, q' are k-equivalent}) \Leftrightarrow \text{ q,q'are 0-equivalent and } \forall x \in \Sigma , \delta(q,x) \sim_{k-1} \delta(q',x)$$
We have the following:
View attachment 5802
$0$-equivalent: $\{ A,B,C,E\}, \{ D,F,G,H\}$
$1$-equivalnt: $\{ A,B,C,E\}, \{D\}, \{ F,G,H\}$
$2$-equivalent: $\{A,C\}, \{B,E\}, \{ D \}, \{ F,G,H\}$
$3$-equivalent: $\{A,C\}, \{B,E\}, \{ D \}, \{F,G,H \}$
Could you explain to me how we found the $k$-equivalent sets for $k \geq 1$ ?
How do we find the states $q, q'$ for which $\delta(q, x) \sim_{k-1} \delta(q',x)$ ?
In the notes of computability theory, I found the following:
$$q \sim_0 q' (\text{ q, q' are 0-equivalent}) \Leftrightarrow \text{For each input, q,q' have the same output} $$
$$q \sim_k q' (\text{ q, q' are k-equivalent}) \Leftrightarrow \text{ q,q'are 0-equivalent and } \forall x \in \Sigma , \delta(q,x) \sim_{k-1} \delta(q',x)$$
We have the following:
View attachment 5802
$0$-equivalent: $\{ A,B,C,E\}, \{ D,F,G,H\}$
$1$-equivalnt: $\{ A,B,C,E\}, \{D\}, \{ F,G,H\}$
$2$-equivalent: $\{A,C\}, \{B,E\}, \{ D \}, \{ F,G,H\}$
$3$-equivalent: $\{A,C\}, \{B,E\}, \{ D \}, \{F,G,H \}$
Could you explain to me how we found the $k$-equivalent sets for $k \geq 1$ ?
How do we find the states $q, q'$ for which $\delta(q, x) \sim_{k-1} \delta(q',x)$ ?