- #1
agnimusayoti
- 240
- 23
- Homework Statement
- If $$u=\int_{x}^{(y-x)} \frac{sin t}{t} dt$$. Find ##\frac {\partial{u}}{\partial{x}}. \frac {\partial{u}}{\partial{y}}, \frac {\partial{y}}{\partial{x}}## at ##x=\frac{\pi}{2}; y=\pi##
- Relevant Equations
- Leibniz Rule.
Because the limit of the integral is multi-variable, which is not explained at the ML Boas's example, I tried to start from the basic. First, I use:
$$\frac {dF}{dx}=f(x) \Rightarrow \int_a^b f(t) dt = F(b) - F(a)$$.
In my case now:
$$\int_{u(x)}^{v(x,y)} f(t) dt = F(v(x,y)) - F(u(x))$$
So,
$$\frac {d}{dx} \int_{u(x)}^{v(x,y)} f(t) dt = \frac {d}{dx} [F(v(x,y)) - F(u(x))]$$
$$\frac {d}{dx} \int_{u(x)}^{v(x,y)} f(t) dt = \frac {d}{dv} [F(v(x,y))]\frac {dv(x,y)}{dx} - \frac {d}{du} F(u(x)) \frac {du(x)}{dx}$$
$$\frac {d}{dx} \int_{u(x)}^{v(x,y)} f(t) dt = f(v) \frac {dv(x,y)}{dx} - f(u) \frac {du(x)}{dx}$$
where
$$dv(x,y)= \frac {\partial v}{\partial x} dx+\frac {\partial v}{\partial y} dy$$
So,
$$\frac {dv(x,y)}{dx}= \frac {\partial v}{\partial x} +\frac {\partial v}{\partial y} \frac {dy}{dx}$$
Now,
I put the detail on the question, where:
$$f(t) = \frac{\sin (t)}{t}$$
##v(x,y) = y - x/t## then ##dv = dy - dx##. So, ##\frac {\partial v}{\partial x}=-1## and ##\frac {\partial v}{\partial y} = 1##.
Now, with this, can I solve the problem? Thanks...
$$\frac {dF}{dx}=f(x) \Rightarrow \int_a^b f(t) dt = F(b) - F(a)$$.
In my case now:
$$\int_{u(x)}^{v(x,y)} f(t) dt = F(v(x,y)) - F(u(x))$$
So,
$$\frac {d}{dx} \int_{u(x)}^{v(x,y)} f(t) dt = \frac {d}{dx} [F(v(x,y)) - F(u(x))]$$
$$\frac {d}{dx} \int_{u(x)}^{v(x,y)} f(t) dt = \frac {d}{dv} [F(v(x,y))]\frac {dv(x,y)}{dx} - \frac {d}{du} F(u(x)) \frac {du(x)}{dx}$$
$$\frac {d}{dx} \int_{u(x)}^{v(x,y)} f(t) dt = f(v) \frac {dv(x,y)}{dx} - f(u) \frac {du(x)}{dx}$$
where
$$dv(x,y)= \frac {\partial v}{\partial x} dx+\frac {\partial v}{\partial y} dy$$
So,
$$\frac {dv(x,y)}{dx}= \frac {\partial v}{\partial x} +\frac {\partial v}{\partial y} \frac {dy}{dx}$$
Now,
I put the detail on the question, where:
$$f(t) = \frac{\sin (t)}{t}$$
##v(x,y) = y - x/t## then ##dv = dy - dx##. So, ##\frac {\partial v}{\partial x}=-1## and ##\frac {\partial v}{\partial y} = 1##.
Now, with this, can I solve the problem? Thanks...
Last edited by a moderator: