- #1
randommacuser
- 24
- 0
1. Prove (a,b)=1 iff (a+b, ab)=1
I'm guessing the main tools I have here are xa+yb=1 and the lemma behind the Euclidean algorithm: if a=bq+r, (a,b)=(b,r). I figure I need to do lots of manipulation to build up a more complicated equality, but I can't make it quite work. Any suggestions?
2. Suppose x an integer such that 0<x<n^3. Show there exist a_0, a_1, a_2 in {0,1,...,n-1} such that x=a_0+a_1n+a_2n^2
I don't even know where to start this one.
I'm guessing the main tools I have here are xa+yb=1 and the lemma behind the Euclidean algorithm: if a=bq+r, (a,b)=(b,r). I figure I need to do lots of manipulation to build up a more complicated equality, but I can't make it quite work. Any suggestions?
2. Suppose x an integer such that 0<x<n^3. Show there exist a_0, a_1, a_2 in {0,1,...,n-1} such that x=a_0+a_1n+a_2n^2
I don't even know where to start this one.
Last edited: