MHB Why is \{ x_1, x_2, \ldots, x_{n-1}, x \} a basis for F in Proposition 4.3.14?

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Modules
Click For Summary
The discussion centers on understanding why the set {x_1, x_2, ..., x_{n-1}, x} forms a basis for F in the context of Proposition 4.3.14 from Paul E. Bland's "Rings and Their Modules." It is established that if a_n is a unit, then x can be expressed as x = x_n a_n, confirming that x is a linear combination of the basis elements. The participants clarify that since {x_1, x_2, ..., x_n} is a basis, replacing x_n with x does not change the linear independence or spanning properties of the set. Ultimately, the conclusion is reached that {x_1, x_2, ..., x} indeed constitutes a basis for F. This understanding is crucial for grasping the structure of modules over principal ideal domains.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book, "Rings and Their Modules".

I am focused on Section 4.3: Modules Over Principal Ideal Domains ... and I need yet further help in order to fully understand the proof of Proposition 4.3.14 ... ...

Proposition 4.3.14 reads as follows:

View attachment 8323
View attachment 8324

In the above proof by Bland we read the following:

" ... ... If $$a_n \neq 0$$, let $$y = x_1 a_1 + x_2 a_2 + \ ... \ ... \ + x_{n-1} a_{n-1}$$, so that $$x = y + x_n a_n$$. If $$y = 0$$, then $$x = x_n a_n$$, so $$a_n$$ is a unit since $$x$$ is primitive. Thus $$\{ x_1, x_2, \ ... \ ... \ , x_{n-1}, x \}$$ is a basis for $$F$$. ... ..."Can someone please explain exactly why/how $$\{ x_1, x_2, \ ... \ ... \ , x_{n-1}, x \}$$ is a basis for $$F$$ ... ...
Help will be much appreciated ... ...

Peter==========================================================================================

It may help MHB
members reading this post to have access to Bland's definition of 'primitive element of a module' ... especially as it seems to me that the definition is a bit unusual ... so I am providing the same as follows:
https://www.physicsforums.com/attachments/8325
Hope that helps ...

Peter
 
Last edited:
Physics news on Phys.org
Remember from linear algebra, that if
$$\{x_1, \cdots, x_i, \cdots, x_n \}$$
is a basis of F, then, if $c \neq 0$ then
$$\{x_1, \cdots, cx_i, \cdots, x_n \}$$
is also a basis of F.

Here we have that $x=x_n a_n$ and $a_n$ is a unit, thus $a_n \neq 0$ and if
$$\{x_1, \cdots, x_{n-1},x_n \}$$
is a basis of F, so
$$\{x_1, \cdots, x_{n-1}, x \}$$
is also a basis of F
 
steenis said:
Remember from linear algebra, that if
$$\{x_1, \cdots, x_i, \cdots, x_n \}$$
is a basis of F, then, if $c \neq 0$ then
$$\{x_1, \cdots, cx_i, \cdots, x_n \}$$
is also a basis of F.

Here we have that $x=x_n a_n$ and $a_n$ is a unit, thus $a_n \neq 0$ and if
$$\{x_1, \cdots, x_{n-1},x_n \}$$
is a basis of F, so
$$\{x_1, \cdots, x_{n-1}, x \}$$
is also a basis of F
Thanks Steenis ...

Appreciate your help...

Peter
 
On second thoughts, my answer is nor correct, because R is not a field, but a commutative ring.

Correct answer, I hope:

$\{x_1,x_2, \cdots, x_n \}$ is a basis for F, thus

$F=x_1R \oplus x_2R \oplus \cdots \oplus x_nR$

we have: $x=x_n a_n$ and $a_n$ is a unit

then $R=a_nR$ and $x_nR=xR$

thus $F=x_1R \oplus x_2R \oplus \cdots \oplus xR$

thus $\{x_1,x_2, \cdots, x \}$ is a basis for F
 
Last edited:
steenis said:
On second thoughts, my answer is nor correct, because R is not a field, but a commutative ring.

Correct answer, I hope:

$\{x_1,x_2, \cdots, x_n \}$ is a basis for F, thus

$F=x_1R \oplus x_2R \oplus \cdots \oplus x_nR$

we have: $x=x_n a_n$ and $a_n$ is a unit

then $R=a_nR$ and $x_nR=xR$

thus $F=x_1R \oplus x_2R \oplus \cdots \oplus xR$

thus $\{x_1,x_2, \cdots, x \}$ is a basis for F

Thanks for clarifying that Steenis ...

Peter
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

Replies
2
Views
1K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K