- #1
ptabor
- 15
- 0
I'm playing around with the algorithm and I'm having some confusion:
the algorithm is as follows: to factorize some integer N pick some integer a such that a < N.
then compute the function f(x) = a^x mod N
f(x) will be periodic with period r, then to find the factors you find the greatest common divisor of N and a^(r/2) +\- 1
For example, suppose that N = 12. Then let us say that a = 5, then we have f(x) = 5^x mod 12. Plugging in some values for x, we see that
f(1) = 5 mod 12 = 5
f(2) = 25 mod 12 = 1
f(3) = 125 mod 12 = 5
f(4) = 625 mod 12 = 1
so here the period is 2, hence we must find the gcd of 5^(2/2) +\- 1 and N
=> gcd of 12 and 4 is 2; gcd of 12 and 6 is 6
hence 12 = 6*2
But suppose I start over and let a = 4
f(1) = 4 mod 12 = 4
f(2) = 16 mod 12 = 4
f(3) = 64 mod 12 = 4
and so on.
So the period here is 1, and we must find the gcd of 4^(1/2) +\- 1
and 12.
gcd of 3 and 12 is 3, gcd of 1 and 12 is 1. So does this imply that a is also a factor of N? It seems to me that it must, in all cases, but I don't want to make a hasty generalization.
the algorithm is as follows: to factorize some integer N pick some integer a such that a < N.
then compute the function f(x) = a^x mod N
f(x) will be periodic with period r, then to find the factors you find the greatest common divisor of N and a^(r/2) +\- 1
For example, suppose that N = 12. Then let us say that a = 5, then we have f(x) = 5^x mod 12. Plugging in some values for x, we see that
f(1) = 5 mod 12 = 5
f(2) = 25 mod 12 = 1
f(3) = 125 mod 12 = 5
f(4) = 625 mod 12 = 1
so here the period is 2, hence we must find the gcd of 5^(2/2) +\- 1 and N
=> gcd of 12 and 4 is 2; gcd of 12 and 6 is 6
hence 12 = 6*2
But suppose I start over and let a = 4
f(1) = 4 mod 12 = 4
f(2) = 16 mod 12 = 4
f(3) = 64 mod 12 = 4
and so on.
So the period here is 1, and we must find the gcd of 4^(1/2) +\- 1
and 12.
gcd of 3 and 12 is 3, gcd of 1 and 12 is 1. So does this imply that a is also a factor of N? It seems to me that it must, in all cases, but I don't want to make a hasty generalization.
Last edited: