- #1
Diracobama2181
- 75
- 2
- TL;DR Summary
- Currently needing insight on re normalization for $$\bra{ \overrightarrow{P'}}\phi^4\ket{ \overrightarrow{P}}$$.
I already know this quantity diverges, however I was wondering where to go from there. Any resource would be appreciated. Thank you.
Useful Information:
$$\phi=\int\frac{d^3k}{2\omega_k (2\pi)^3}(\hat{a}(\overrightarrow{k})e^{-ikx}+\hat{a}(\overrightarrow{k})^{\dagger}e^{ikx}))$$
$$\ket{\overrightarrow{P}}=\hat{a}(\overrightarrow{k})^{\dagger}\ket{0}$$
Useful Information:
$$\phi=\int\frac{d^3k}{2\omega_k (2\pi)^3}(\hat{a}(\overrightarrow{k})e^{-ikx}+\hat{a}(\overrightarrow{k})^{\dagger}e^{ikx}))$$
$$\ket{\overrightarrow{P}}=\hat{a}(\overrightarrow{k})^{\dagger}\ket{0}$$
Last edited: