- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
The velocity field $u=ax^2, v=bxy$ ($a, b=\text{ constant }$) represents a flow field of an incompressible fluid. Construct the streamlines and find the cutoff points of the flow ($\overrightarrow{u}=(u,v)=0$).
From the fact the fluid is incompressible we have that $$div u=0 \Rightarrow \partial_x u+\partial_y v=0 \Rightarrow 2ax+bx=0 \Rightarrow b=-2a$$
To construct the streamlines we do the following:
$$\frac{dx}{u}=\frac{dy}{v}$$
$$\frac{dx}{ax^2}=\frac{dy}{bxy} \Rightarrow \frac{dx}{ax}=-\frac{dy}{2ay} \Rightarrow \frac{dx}{x}=-\frac{dy}{2y} \Rightarrow \ln x=-\frac{1}{2}\ln y +c \Rightarrow \ln x=\ln y^{-\frac{1}{2}} +c \Rightarrow x=cy^{-\frac{1}{2}} \Rightarrow xy^{\frac{1}{2}}=c \Rightarrow x^2y=C$$
Is this correct?? (Wondering)
So, are the streamlines the curves $x^2t=C$ ?? (Wondering) To find the cutoff points of the flow do we have to do the following??
$$\overrightarrow{u}=(u, v)=(0, 0) \Rightarrow ax^2=0 \text{ and } bxy=0 \Rightarrow ax^2=0 \text{ and } -2axy=0$$
when $a>0$ we have that $x=0$ or $x=y=0$
(Wondering)
The velocity field $u=ax^2, v=bxy$ ($a, b=\text{ constant }$) represents a flow field of an incompressible fluid. Construct the streamlines and find the cutoff points of the flow ($\overrightarrow{u}=(u,v)=0$).
From the fact the fluid is incompressible we have that $$div u=0 \Rightarrow \partial_x u+\partial_y v=0 \Rightarrow 2ax+bx=0 \Rightarrow b=-2a$$
To construct the streamlines we do the following:
$$\frac{dx}{u}=\frac{dy}{v}$$
$$\frac{dx}{ax^2}=\frac{dy}{bxy} \Rightarrow \frac{dx}{ax}=-\frac{dy}{2ay} \Rightarrow \frac{dx}{x}=-\frac{dy}{2y} \Rightarrow \ln x=-\frac{1}{2}\ln y +c \Rightarrow \ln x=\ln y^{-\frac{1}{2}} +c \Rightarrow x=cy^{-\frac{1}{2}} \Rightarrow xy^{\frac{1}{2}}=c \Rightarrow x^2y=C$$
Is this correct?? (Wondering)
So, are the streamlines the curves $x^2t=C$ ?? (Wondering) To find the cutoff points of the flow do we have to do the following??
$$\overrightarrow{u}=(u, v)=(0, 0) \Rightarrow ax^2=0 \text{ and } bxy=0 \Rightarrow ax^2=0 \text{ and } -2axy=0$$
when $a>0$ we have that $x=0$ or $x=y=0$
(Wondering)