- #1
wu7
- 3
- 0
Homework Statement
One pulley, on one side we have a block with mass m.
On the other side we have a cylinder with mass m.
Cylinder (radius R) has unlimited string (massless, negligible thickness, no slippage)
So you can imagine two blocks falling as more string unravels from the cylinder.
I am told that these two objects have the same acceleration downwards. Why?
Homework Equations
F=ma
ma=mg-T
torque? T*R=I*[itex]\alpha[/itex]
The Attempt at a Solution
The problem made it sound like this was a quick, obvious argument.
I proceeded to a longer argument, finding that the accelerations of both masses were (2/3)g downward:
starting with the cylinder-
TR=I*[itex]\alpha[/itex]
T*R2 = (1/2)M*R2 * a
Finding T= (1/2)ma, then plugging T back into the standard F=ma equations.
Then I find the acceleration of the block to be (2/3)g as well.
Is this even right? If it is, was there a way to show that the objects' accelerations were the same without finding the actual accelerations?
The reason I don't think this is right is because I did the problem using conservation of energy using the assumption that the objects fell down at the same acceleration.
With conservation of energy I got acceleration=(1/2)g (conserving KE, PE, angular KE)