- #36
sweet springs
- 1,223
- 75
Let me confirm some calculation based on post #30
Along the geodesic
[tex]u^0=\frac{1}{\sqrt{1-\frac{2M}{r_{max}}}}[/tex]
[tex]u^0u_0=(1-\frac{2M}{r})\frac{1}{1-\frac{2M}{r_{max}}}>1[/tex]
So square of velocity with minus signature is,say x^1=r, [tex]u^1u_1=1-u_0u^0=\frac{\frac{2M}{r}-\frac{2M}{r_{max}}}{1-\frac{2M}{r_{max}}}[/tex]
In GR is energy [tex]mu^0u_0[/tex] or "energy at infinity" that includes "gravitational potential energy" ?
Along the geodesic
[tex]u^0=\frac{1}{\sqrt{1-\frac{2M}{r_{max}}}}[/tex]
[tex]u^0u_0=(1-\frac{2M}{r})\frac{1}{1-\frac{2M}{r_{max}}}>1[/tex]
So square of velocity with minus signature is,say x^1=r, [tex]u^1u_1=1-u_0u^0=\frac{\frac{2M}{r}-\frac{2M}{r_{max}}}{1-\frac{2M}{r_{max}}}[/tex]
In GR is energy [tex]mu^0u_0[/tex] or "energy at infinity" that includes "gravitational potential energy" ?
Last edited: