- #1
ognik
- 643
- 2
They ask for both $ \sum_{n=0}^{\infty} p^n Cos nx, also \: p^n Sin (nx) $
I'm thinking De Moivre so \(\displaystyle \sum_{n=0}^{\infty}p^n (e^{ix})^n = \sum_{n=0}^{\infty} p^n(Cos x + i Sin x)^n= \sum_{n=0}^{\infty} (pCos x + ip Sin x)^n\)
I also tried a geometric series with a=1, $r=pe^{ix}$
But those won't work out with the limit of $\infty$, so any hints please?
I'm thinking De Moivre so \(\displaystyle \sum_{n=0}^{\infty}p^n (e^{ix})^n = \sum_{n=0}^{\infty} p^n(Cos x + i Sin x)^n= \sum_{n=0}^{\infty} (pCos x + ip Sin x)^n\)
I also tried a geometric series with a=1, $r=pe^{ix}$
But those won't work out with the limit of $\infty$, so any hints please?