- #1
archaic
- 688
- 214
- Homework Statement
- ##X_1## represents the number of clients in a queue, and ##X_2## the same, but is faster (the queue). (see figure for the pmf)
1) What's the probability that:
a) both queues are empty?
b) both queues are of the same length?
c) the total number of customers in the two queues is 4?
d) the faster line has more than 1 customer, given that the other is empty?
2) Find the correlation between ##X_1## and ##X_2##. Comment on the existence and strength of linear relation between ##X_1##and ##X_2##.
3) Are the two random variables independent? Why?
- Relevant Equations
- n/a
$$ \begin{array}{lllll}X_1&0&1&2&3\\f_{X_1}&0.4&0.3&0.25&0.05\end{array}\,|\,\begin{array}{llllll}X_2&0&1&2&3&4\\f_{X_2}&0.05&0.2&0.25&0.2&0.3\end{array}$$
1a) ##p=0.05##
1b) ##p=0.05+0.05+0+0=0.1##
1c) ##p=0.05+0.05+0+0=0.1##
1d) ##p=0.1+0.05+0.05=0.2##
2) ##\mu_{X_1}=0\times0.4+1\times0.3+2\times0.25+3\times0.05=0.95##
##\sigma^2_{X_1}=0^2\times0.4+1^2\times0.3+2^2\times0.25+3^2\times0.05-0.95^2= 0.8475 ##
##\mu_{X_2}=0\times0.05+1\times0.2+2\times0.25+3\times0.2+4\times0.3=2.5##
##\sigma^2_{X_2}=0^2\times0.05+1^2\times0.2+2^2\times0.25+3^2\times0.2+4^2\times0.3-2.5^2=1.55##
##\mathrm E[X_1X_2]=1\times1\times0.05+1\times2\times0.15+1\times3\times0.05+1\times4\times0.05+2\times3\times0.1+2\times4\times0.15+3\times4\times0.05=3.1##
##\mathrm{cov}(X_1,X_2)=E[X_1X_2]-\mu_{X_1}\mu_{X_2}=3.1-0.95\times2.5=0.725##
##\rho_{X_1X_2}=\frac{\mathrm{cov}(X_1,X_2)}{\sigma_{X_1}\sigma_{X_2}}=\frac{0.725}{\sqrt{0.8475\times1.55}}=0.632560842248##
Since ##\rho_{X_1X_2}>0.5##, the two random variables are strongly correlated.
The probability for a fixed ##X_1## increases then decreases as ##X_2## varies, so there doesn't seem to exist a linear relationship between the two variables. Correct?
3) They are not independent because ##f_{X_1X_2}(0,0)=0.05\neq f_{X_1}(0)f_{X_2}(0)=0.02##
Anything amiss? Thanks!