- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
A cycloid is a flat curve that is traced by point of the rim of a circle while the circle rolls without slippage on the line. Show that if the line is the axis $x$ and the circle has radius $a>0$, then the cycloid can be parametrized by $$\gamma (t)=a(t-\sin t, 1-\cos t)$$
Could you give me some hints how we could show that?
A cycloid is a flat curve that is traced by point of the rim of a circle while the circle rolls without slippage on the line. Show that if the line is the axis $x$ and the circle has radius $a>0$, then the cycloid can be parametrized by $$\gamma (t)=a(t-\sin t, 1-\cos t)$$
Could you give me some hints how we could show that?