Exploring the Depths of Integrals

  • MHB
  • Thread starter sbhatnagar
  • Start date
  • Tags
    Integrals
In summary: Is that cool?Re: integrals (lots of them!)In summary, we have discussed five integrals and their solutions:1. $\displaystyle \int_{0}^{1}\frac{\sin(\ln x)}{\ln x}dx$ has a solution of $\frac{\pi}{4}$.2. $\displaystyle \int_{0}^{1}\frac{\arctan(x)}{1+x}dx$ has a solution of $\frac{\pi}{8}\ln(2)$.3. $\displaystyle \int_{0
  • #1
sbhatnagar
87
0
integrals (lots of them!)

1. $\displaystyle \int_{0}^{1}\frac{\sin(\ln x)}{\ln x}dx$

2. $\displaystyle \int_{0}^{1}\frac{\arctan(x)}{1+x}dx$

3. $\displaystyle \int_{0}^{\infty}\frac{\ln(1+x^2)}{1+x^2}dx$

4. $\displaystyle \int_{0}^{\infty}e^{- \left( x^2+\dfrac{1}{x^2}\right)}dx$

5. $\displaystyle \int_{0}^{2\pi}e^{\cos \theta} \cos(\sin \theta) d\theta$
 
Last edited:
Mathematics news on Phys.org
  • #2
Re: integrals (lots of them!)

Remembering that is...

$\displaystyle \mathcal{L}\{\frac{sin t}{t}\}= \int_{s}^{\infty} \frac{du}{1+u^{2}}= \cot^{-1} s$ (1)

... we obtain...

$\displaystyle \int_{0}^{1} \frac{\sin \ln x}{\ln x}\ dx= \int_{-\infty}^{0}\frac{\sin t}{t}\ e^{t}\ dt = \int_{0}^{\infty}\frac{\sin t}{t}\ e^{-t}\ dt = \cot^{-1} 1= \frac{\pi}{4}$ (2)

Kind regards

$\chi$ $\sigma$
 
  • #3
Re: integrals (lots of them!)

Keep the good stuff coming!

sbhatnagar said:
2. $\displaystyle \int_{0}^{1}\frac{\arctan(x)}{1+x}dx$
Sub $x = \tan{t}$, we get

$$ \displaystyle \begin{aligned}I & = \int_{0}^{1}\frac{ \arctan{x}}{1+x}\;{dx} \\& = \int_{0}^{\pi/4}\frac{t \sec{t}}{\cos{t}+\sin{t}}\;{dt}.\end{aligned}$$

Put $t \mapsto \frac{\pi}{4}-t$ and add them to get:

$$\displaystyle \begin{aligned} 2I & = \frac{\pi}{4}\int_{0}^{\pi/4}\frac{\sec{t}}{\cos{t}+\sin{t}}\;{dt} \\& = \frac{\pi}{4}\int_{0}^{\pi/4}\frac{\sec^2{t}}{1+\tan{t}}\;{dt} \\& = \frac{\pi}{4}\int_{0}^{\pi/4}\frac{(1+\tan{t})'}{1+\tan{t}}\;{dt} \\& = \frac{\pi}{4}\ln\bigg|1+\tan{t}\bigg|_{0}^{\pi/4} \\& = \frac{\pi}{4}\ln(2). \end{aligned}$$

Therefore $\displaystyle \int_{0}^{1}\frac{\arctan(x)}{1+x}\;{dx} = \frac{\pi}{8}\ln(2).$

3. $\displaystyle \int_{0}^{\infty}\frac{\ln(1+x^2)}{1+x^2}dx$

Sub $x = \tan(\varphi)$ then put $\varphi \mapsto \frac{\pi}{2}-\varphi$, we get$$ \displaystyle \begin{aligned} I & = \int_{0}^{\infty} \frac{\ln(1+x^2)}{1+x^2}\;{dx} \\& = -2\int_{0}^{\pi/2}\ln(\cos\varphi)\;{d\varphi} \\& = -2\int_{0}^{\pi/2}\ln(\sin\varphi)\;{d\varphi}. \end{aligned}$$Adding the second two integrals we get $$ \displaystyle \begin{aligned}2I & = -2\int_{0}^{\pi/2}\ln\left(\frac{1}{2}\sin 2 \varphi\right)\;{d\varphi} \\& =\pi\ln(2)-2\int_{0}^{\pi/2}\ln(\sin 2\varphi)\;{d\varphi} \\& = \pi\ln(2)-\int_{0}^{\pi}\ln(\sin\varphi)\;{d\varphi} \\& = \pi\ln(2)-2\int_{0}^{\pi/2}\ln(\sin\varphi)\;{d\varphi} \\& = \pi\ln(2)+I.\end{aligned} $$Therefore $\displaystyle \int_{0}^{\infty} \frac{\ln(1+x^2)}{1+x^2}\;{dx} = \pi\ln(2).$
 
Last edited:
  • #4
Re: integrals (lots of them!)

$\displaystyle \int_{0}^{\infty}\frac{\ln(1+x^2)}{1+x^2}dx$

Here is my approach for the third one.

$\displaystyle I(\lambda)=\int_{0}^{\infty}\frac{\ln(1+\lambda x^2)}{1+x^2}dx$

$\displaystyle I'(\lambda)=\int_{0}^{\infty}\frac{x^2}{(1+\lambda x^2)(1+x^2)}dx=\frac{1}{1-\lambda}\int_{0}^{\infty}\frac{1}{1+\lambda x^2}dx+\frac{1}{\lambda-1}\int_{0}^{\infty}\frac{1}{1+x^2}dx$

$\displaystyle =\frac{\pi}{2(\lambda-1)}-\frac{\pi}{2\sqrt{\lambda}(\lambda-1)}=\frac{\pi}{2(\lambda+\sqrt{\lambda})}$

Integrating both side yields:

$\displaystyle I(\lambda)=\pi \ln(\sqrt{\lambda}+1)+C$

For $\lambda=0$ we have $C=0$.

$\displaystyle I(\lambda)=\pi \ln(\sqrt{\lambda}+1)$

Therefore

$\displaystyle \int_{0}^{\infty}\frac{\ln(1+x^2)}{1+x^2}dx=I(1)= \pi \ln(2)$

---------- Post added at 02:34 PM ---------- Previous post was at 02:11 PM ----------


$\displaystyle \int_{0}^{1}\frac{\sin( \ln x)}{\ln x}dx$
For the first one I did the following:

$\displaystyle I(\lambda)=\int_{0}^{1}\frac{\sin(\lambda \ln x)}{\ln x}dx$

$\displaystyle I'(\lambda)=\int_{0}^{1}\cos(\lambda \ln x)dx=\int_{-\infty}^{0}e^x \cos(\lambda x)dx$

$\displaystyle =\left[ \frac{e^x \{ \cos(\lambda x)+\lambda \sin(\lambda x)\}}{1+\lambda^2}\right]_{-\infty}^{0}=\frac{1}{1+\lambda^2}$

Integrate both sides:

$\displaystyle I(\lambda)=\arctan(\lambda)+C$

For $\lambda=0$ we have $C=0$. so

$\displaystyle I(\lambda)=\arctan(\lambda)$

Therefore

$\displaystyle \int_{0}^{1}\frac{\sin( \ln x)}{\ln x}dx=I(1)=\arctan(1)=\frac{\pi}{4}$
 
Last edited:
  • #5
Re: integrals (lots of them!)

Let's define...

$\displaystyle \varphi(t)=\int_{0}^{\infty} e^{-(x^{2}+\frac{t^{2}}{x^{2}})}\ dx$ (1)

... and now we derive (1)...

$\displaystyle \varphi^{'}(t)=-2\ t\ \int_{0}^{\infty} \frac{1}{x^{2}}\ e^{-(x^{2}+\frac{t^{2}}{x^{2}})}\ dx$ (2)

Setting in (2) $\displaystyle \tau=\frac{t}{x}$ in some steps we obtain...

$\displaystyle \varphi^{'}(t)=-2\ \int_{0}^{\infty} e^{-(\tau^{2}+\frac{t^{2}}{\tau^{2}})}\ d \tau = -2\ \varphi(t)$ (3)

The (3) is an easily solvable ODE and, taking into account the well known result...

$\displaystyle \int_{0}^{\infty} e^{-x^{2}}\ dx = \frac{\sqrt{\pi}}{2}$ (4)

... we obtain...

$\displaystyle \varphi(t)= \frac{\sqrt{\pi}}{2}\ e^{-2\ t}$ (5)

Setting in (5) t=1 we finally obtain...

$\displaystyle \int_{0}^{\infty} e^{-(x^{2}+\frac{1}{x^{2}})}\ dx =\frac{\sqrt{\pi}}{2}\ e^{-2}$ (6)

Kind regards

$\chi$ $\sigma$
 
Last edited:
  • #6
Re: integrals (lots of them!)

$\displaystyle \int_{0}^{\infty}e^{-\left(\displaystyle x^2+\dfrac{1}{x^2} \right)}dx$

Yeah that's right. I also used the same technique. Here is another solution which amazed me:

$\displaystyle I=\int_{0}^{\infty}e^{-\left(\displaystyle x^2+\dfrac{1}{x^2} \right)}dx=\int_{0}^{\infty}e^{-\left(\displaystyle x^2+\dfrac{1}{x^2}-2 \right)-\displaystyle 2}dx=e^{-2}\int_{0}^{\infty}e^{-\left(\displaystyle x^2+\dfrac{1}{x^2}-2 \right)}dx$

Use the fact that $\displaystyle \int_{0}^{\infty}f \left(x^2+\frac{1}{x^2}-2\right)dx=\int_{0}^{\infty}f \left(x^2\right)dx$:

$\displaystyle I=e^{-2}\int_{0}^{\infty}e^{-x^2}dx=e^{-2}\frac{\sqrt{\pi}}{2}$
 
  • #7
Re: integrals (lots of them!)

You guys took the term 'magic differentiation' to a whole new level! (Giggle)
 
  • #8
Re: integrals (lots of them!)

Solution for 5.

$$ \int_{0}^{2\pi}e^{\cos \theta}\cos(\sin \theta)d\theta $$

$\displaystyle I(\phi)=\int_{0}^{2\pi}e^{\phi \cos \theta}\cos(\phi \sin \theta)d\theta$

$\displaystyle I'(\phi)=\int_{0}^{2\pi}e^{\phi \cos \theta}(\cos(\theta)\cos(\phi \sin \theta)-\sin(\theta)\sin(\phi \sin \theta))d\theta$

$\displaystyle =\frac{1}{\phi}\int_{0}^{2\pi}\frac{d}{d\theta}(e^{\phi\cos \theta} \sin(\phi \sin\theta))d\theta=\frac{1}{\phi}\int_{0}^{2\pi}d(e^{\phi\cos \theta} \sin(\phi \sin\theta))$

$\displaystyle =0$

Integrate both sides:

$\displaystyle I(\phi)=0+C$

When $\phi=0$ then $C=2\pi$.

Therefore

$\displaystyle I(\phi)=2\pi$

so

$\displaystyle \int_{0}^{2\pi}e^{\cos \theta}\cos(\sin \theta)d\theta =I(1)=2\pi $
 

FAQ: Exploring the Depths of Integrals

What is an integral?

An integral is a mathematical concept that represents the area under a curve on a graph. It is a fundamental tool in calculus and is used to solve a variety of real-world problems.

Why is exploring the depths of integrals important?

Exploring the depths of integrals allows us to understand the underlying principles and applications of calculus. It also helps us to solve complex mathematical problems and make sense of real-world phenomena.

What are the different types of integrals?

The two main types of integrals are definite and indefinite integrals. A definite integral has specific limits of integration and gives a numerical value, while an indefinite integral has no limits and gives a general expression.

How do you solve an integral?

To solve an integral, you need to use integration techniques such as substitution, integration by parts, or partial fractions. It is also important to have a good understanding of the fundamental theorem of calculus and basic algebraic manipulations.

What are some real-world applications of integrals?

Integrals have a wide range of applications in fields such as physics, engineering, economics, and statistics. They can be used to calculate areas, volumes, work, and even probabilities. Examples include finding the area under a velocity-time graph to calculate displacement, or calculating the volume of a solid of revolution in engineering.

Similar threads

Replies
1
Views
10K
Replies
1
Views
932
Replies
4
Views
1K
Replies
1
Views
917
Replies
1
Views
822
Replies
1
Views
2K
Replies
3
Views
2K
Back
Top