- #1
bboo123
- 3
- 0
In the 7th edition of the book "Elements of Electromagnetics by Matthew N. O. Sadiku"
On page 190 the author goes on to say:
"We now consider the case in which the dielectric region contains free charge.
If ##\rho_v## is the volume density of free charge, the total volume charge density ##\rho_t## is given by:
$$\rho_t = \rho_v + \rho_{pv} = \nabla.\epsilon_0E$$ (Where ##\rho_{pv}## is the volume charge density due to polarization of the dielectric.)
Hence,
$$\rho_v = \nabla.\epsilon_0E - \rho_{vp} = \nabla.(\epsilon_0E + P) = \nabla.D$$
We conclude that the net effect of the dielectric on the electric field ##E## is to increase ##D##
inside it by the amount ##P##. In other words, ##\textbf{
the application of E to the dielectric material causes the flux density to be greater than it would be in free space.
}## "
Now my questions are:
1) I don't exactly get how did the author conclude the electric flux density increases by P from the last equation since E is definitely not the External electric field here, so it's wrong to compare it directly with the electric flux density in free space.
2) ##\textbf{And this is my main question}##, if the dielectric did not have free charges, can we say that the electric flux density ##D## ##\textbf{remains constant}##? i.e D is the same as it was in free space in the newly introduced dielectric.
On page 190 the author goes on to say:
"We now consider the case in which the dielectric region contains free charge.
If ##\rho_v## is the volume density of free charge, the total volume charge density ##\rho_t## is given by:
$$\rho_t = \rho_v + \rho_{pv} = \nabla.\epsilon_0E$$ (Where ##\rho_{pv}## is the volume charge density due to polarization of the dielectric.)
Hence,
$$\rho_v = \nabla.\epsilon_0E - \rho_{vp} = \nabla.(\epsilon_0E + P) = \nabla.D$$
We conclude that the net effect of the dielectric on the electric field ##E## is to increase ##D##
inside it by the amount ##P##. In other words, ##\textbf{
the application of E to the dielectric material causes the flux density to be greater than it would be in free space.
}## "
Now my questions are:
1) I don't exactly get how did the author conclude the electric flux density increases by P from the last equation since E is definitely not the External electric field here, so it's wrong to compare it directly with the electric flux density in free space.
2) ##\textbf{And this is my main question}##, if the dielectric did not have free charges, can we say that the electric flux density ##D## ##\textbf{remains constant}##? i.e D is the same as it was in free space in the newly introduced dielectric.