- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
We consider the following problem.
$$Lu=f(x) \text{ in } \Omega \\ u|_{\partial{\Omega}}=0$$
I want to show that if $c(x) \leq -c_0<0$ in $\overline{\Omega}$, then it holds that $\min\{ 0, \frac{\min_{\Omega}f(x)}{-c_0}\}\leq u(x) \leq \max_{\Omega} \{ 0, \frac{\max_{\Omega}f(x)}{-c_0} \}$.
( In general, if $L$ is an elliptic operator, then $Lu=\sum_{i,j=1}^n a_{ij}(x) u_{x_i x_j}+ \sum_{i=1}^n \beta_i(x) u_{x_i}+cu$)
I thought that we could modify somehow the proof of the following lemma:
Lemma: Let $L$ be an elliptic operator in a bounded space $\Omega$ and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$. If $Lu \geq 0$ ($Lu \leq 0$) , $c \leq 0$ in $\Omega$ then
$$\sup_{\Omega} u \leq \max \left( \sup_{\partial{\Omega}} u, 0\right)$$
$$\left( \inf_{\Omega} u \geq \min \{ \inf_{\partial{\Omega}} u,0\}\right)$$
The proof is the following:$e^{\gamma x_1}$, $\beta_0=\sup \frac{|\beta_1|}{\lambda}, c_0=\sup \frac{|c|}{\lambda}$
$L e^{\gamma x_1}= a_{11} \gamma^2 e^{\gamma x_1}+ \beta_1 \gamma e^{\gamma x_1}+c e^{\gamma x_1} \geq e^{\gamma x_1}( a_{11} \gamma^2- \lambda \beta_0 \gamma - \lambda c_0) \geq e^{\gamma x_1} \lambda (\gamma^2-\beta_0 \gamma-c_0)>0$, we choose $\gamma$ to be large enough.$L(u+ \epsilon e^{\gamma x_1})=Lu+ \epsilon Le^{\gamma x_1}>0$
$\sum_{i,j=1}^n a_{ij} (u+ \epsilon e^{\gamma x_1})_{x_i x_j}+ \sum_{i=1}^n \beta_i (u+ \epsilon e^{\gamma x_1})_{x_i}+ c(u+ \epsilon e^{\gamma x_1})>0 $
$u+ \epsilon e^{\gamma x_1}$ does not achieve its positive maximum in $\overline{\Omega} \setminus{\partial{\Omega}}$
so $u+ \epsilon e^{\gamma x_1} \leq 0$ or it achieves its positive maximum in $\partial{\Omega}$
$u \leq u+ \epsilon e^{\gamma x_1} \leq \max \{ 0, \sup_{\partial{\Omega}}(u+ \epsilon e^{\gamma x_1}) \} \ \forall x \in \Omega$
$u \leq \max \{ 0, \sup_{\partial{\Omega}} (u+ \epsilon e^{\gamma x_1}) \} \ \forall x$
$\epsilon \to 0$In our case, we would have $L(u+ \epsilon e^{\gamma x_1})=f+Le^{\gamma x_1}$.
But can we write an inequality for the above, although nothing is given for $f$ ?
Or could we maybe use somehow the following theorem?
Theorem: Let $Lu=f$ in a bounded space $\Omega$, $L$ an elliptic operator and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$. Then
$$\sup_{\overline{\Omega}} |u| \leq \sup_{\partial{\Omega}} |u|+ C \sup \frac{|f|}{\lambda}, \text{ C constant}$$
$\lambda$ is such that $0< \lambda |\xi|^2 \leq \sum_{i,j=1}^n a_{ij}(x) \xi_i \xi_j \ \ \ \ \xi \in \mathbb{R}^n, x \in \Omega$
We consider the following problem.
$$Lu=f(x) \text{ in } \Omega \\ u|_{\partial{\Omega}}=0$$
I want to show that if $c(x) \leq -c_0<0$ in $\overline{\Omega}$, then it holds that $\min\{ 0, \frac{\min_{\Omega}f(x)}{-c_0}\}\leq u(x) \leq \max_{\Omega} \{ 0, \frac{\max_{\Omega}f(x)}{-c_0} \}$.
( In general, if $L$ is an elliptic operator, then $Lu=\sum_{i,j=1}^n a_{ij}(x) u_{x_i x_j}+ \sum_{i=1}^n \beta_i(x) u_{x_i}+cu$)
I thought that we could modify somehow the proof of the following lemma:
Lemma: Let $L$ be an elliptic operator in a bounded space $\Omega$ and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$. If $Lu \geq 0$ ($Lu \leq 0$) , $c \leq 0$ in $\Omega$ then
$$\sup_{\Omega} u \leq \max \left( \sup_{\partial{\Omega}} u, 0\right)$$
$$\left( \inf_{\Omega} u \geq \min \{ \inf_{\partial{\Omega}} u,0\}\right)$$
The proof is the following:$e^{\gamma x_1}$, $\beta_0=\sup \frac{|\beta_1|}{\lambda}, c_0=\sup \frac{|c|}{\lambda}$
$L e^{\gamma x_1}= a_{11} \gamma^2 e^{\gamma x_1}+ \beta_1 \gamma e^{\gamma x_1}+c e^{\gamma x_1} \geq e^{\gamma x_1}( a_{11} \gamma^2- \lambda \beta_0 \gamma - \lambda c_0) \geq e^{\gamma x_1} \lambda (\gamma^2-\beta_0 \gamma-c_0)>0$, we choose $\gamma$ to be large enough.$L(u+ \epsilon e^{\gamma x_1})=Lu+ \epsilon Le^{\gamma x_1}>0$
$\sum_{i,j=1}^n a_{ij} (u+ \epsilon e^{\gamma x_1})_{x_i x_j}+ \sum_{i=1}^n \beta_i (u+ \epsilon e^{\gamma x_1})_{x_i}+ c(u+ \epsilon e^{\gamma x_1})>0 $
$u+ \epsilon e^{\gamma x_1}$ does not achieve its positive maximum in $\overline{\Omega} \setminus{\partial{\Omega}}$
so $u+ \epsilon e^{\gamma x_1} \leq 0$ or it achieves its positive maximum in $\partial{\Omega}$
$u \leq u+ \epsilon e^{\gamma x_1} \leq \max \{ 0, \sup_{\partial{\Omega}}(u+ \epsilon e^{\gamma x_1}) \} \ \forall x \in \Omega$
$u \leq \max \{ 0, \sup_{\partial{\Omega}} (u+ \epsilon e^{\gamma x_1}) \} \ \forall x$
$\epsilon \to 0$In our case, we would have $L(u+ \epsilon e^{\gamma x_1})=f+Le^{\gamma x_1}$.
But can we write an inequality for the above, although nothing is given for $f$ ?
Or could we maybe use somehow the following theorem?
Theorem: Let $Lu=f$ in a bounded space $\Omega$, $L$ an elliptic operator and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$. Then
$$\sup_{\overline{\Omega}} |u| \leq \sup_{\partial{\Omega}} |u|+ C \sup \frac{|f|}{\lambda}, \text{ C constant}$$
$\lambda$ is such that $0< \lambda |\xi|^2 \leq \sum_{i,j=1}^n a_{ij}(x) \xi_i \xi_j \ \ \ \ \xi \in \mathbb{R}^n, x \in \Omega$