- #1
karush
Gold Member
MHB
- 3,269
- 5
$\displaystyle
L_b=\lim_{x \to \infty}
\left\{\frac{n^2}{2^n}\right\} \implies\frac{\infty}{\infty} \\
\text{take natural log of both sides} \\
\ln\left(L_b{}\right)=\lim_{x \to \infty}
\left\{\frac{2\ln\left({n}\right)}{n\ln\left({2}\right)}\right\} \\
\text{not sure?? } $
L_b=\lim_{x \to \infty}
\left\{\frac{n^2}{2^n}\right\} \implies\frac{\infty}{\infty} \\
\text{take natural log of both sides} \\
\ln\left(L_b{}\right)=\lim_{x \to \infty}
\left\{\frac{2\ln\left({n}\right)}{n\ln\left({2}\right)}\right\} \\
\text{not sure?? } $