- #1
jostpuur
- 2,116
- 19
Let X be a measure space, and [itex]f:X\times X\to [0,\infty[[/itex] some integrable function. Is the following inequality always true,
[tex]
\int\limits_{X} dx\;f(x,x)\; \leq\; \sup_{x_1\in X} \int\limits_{X} dx_2\; f(x_1,x_2) ?
[/tex]
[tex]
\int\limits_{X} dx\;f(x,x)\; \leq\; \sup_{x_1\in X} \int\limits_{X} dx_2\; f(x_1,x_2) ?
[/tex]
Last edited: