- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hi! :)
Let $f_n(x)=\frac{n}{x}[\frac{x}{n}], \forall x \neq 0$ ($[\frac{x}{n}]$ is the integer part of $\frac{x}{n}$).
Let $f_n(x)=\frac{n}{x}[\frac{x}{n}], \forall x \neq 0$ ($[\frac{x}{n}]$ is the integer part of $\frac{x}{n}$).
- Prove that $f_n \to 0$ pointwise at $(0,+\infty)$
- Prove that,if $A \subseteq \mathbb{R}- \{0\}$ contains at least one negative number, $f_n$ does not converge pointwise at any function in $A$.
- Let $x>0$. $\exists n\in \mathbb{N}$ such that $n>x \Rightarrow [\frac{x}{n}]=0$(if $n$ is great enough).So, $f_n(x)=\frac{n}{x}[\frac{x}{n}] \to 0$ pointwise.
- Let $x_0<0$. $\exists n \in \mathbb{N}$ such that $n>x_0$...But,why is it then like that: $[\frac{x_0}{n}]=-1$?Could you explain it to me?? (Blush)