- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
I want to find the powerset $\mathcal{P} \mathcal{P} \{ \varnothing, \{ \varnothing \} \}$, which has $16$ elements.
I found that $\mathcal{P} \{ \varnothing, \{ \varnothing \} \}=\{ \varnothing, \{ \{ \varnothing \} \}, \{ \varnothing \}, \{ \varnothing, \{ \varnothing \} \} \}$.
Using the identities:
I found:
$$\mathcal{P} \{ \varnothing, \{ \{ \varnothing \} \}, \{ \varnothing \}, \{ \varnothing, \{ \varnothing \} \} \}=\{ \varnothing, \{ \varnothing \}, \{ \{ \{ \varnothing \} \} \}, \{ \{ \varnothing \} \}, \{ \{ \varnothing, \{ \varnothing \} \} \}, \{ \varnothing, \{ \{ \varnothing \} \}, \{ \varnothing \}, \{ \varnothing, \{ \varnothing \} \} \}$$
Which other identities could I use to find the other elements of the powerset? (Thinking)
I want to find the powerset $\mathcal{P} \mathcal{P} \{ \varnothing, \{ \varnothing \} \}$, which has $16$ elements.
I found that $\mathcal{P} \{ \varnothing, \{ \varnothing \} \}=\{ \varnothing, \{ \{ \varnothing \} \}, \{ \varnothing \}, \{ \varnothing, \{ \varnothing \} \} \}$.
Using the identities:
- The empty set $\varnothing$ is a subset of each set.
$$$$ - If $A$ is a set, then $A \subset A \rightarrow A \in \mathcal{P} A$.
$$$$ - If $A$ is a set and $x \in A$, then:
$$\{ x \} \subset A \rightarrow \{ x \} \in \mathcal{P} A$$
I found:
$$\mathcal{P} \{ \varnothing, \{ \{ \varnothing \} \}, \{ \varnothing \}, \{ \varnothing, \{ \varnothing \} \} \}=\{ \varnothing, \{ \varnothing \}, \{ \{ \{ \varnothing \} \} \}, \{ \{ \varnothing \} \}, \{ \{ \varnothing, \{ \varnothing \} \} \}, \{ \varnothing, \{ \{ \varnothing \} \}, \{ \varnothing \}, \{ \varnothing, \{ \varnothing \} \} \}$$
Which other identities could I use to find the other elements of the powerset? (Thinking)