- #1
Kara386
- 208
- 2
The QCD Lagrangian is
##\mathcal{L}=-\frac{1}{4}G^{a}_{\mu\nu}G^{a\mu\nu}+\sum\limits_{j=1}^n \left[\bar{q}_j\gamma^{\mu}iD_{\mu}q_j - (m_jq^{\dagger}_{Lj}q_{Rj}+h.c.)\right]+\frac{\theta g^2}{32\pi^2}G^{a}_{\mu\nu}\widetilde{G}^{a\mu\nu}##
Why is it so often quoted as just
##\mathcal{L}=-\frac{1}{4}G^{a}_{\mu\nu}G^{a\mu\nu}+\sum\limits_{j=1}^n \left[\bar{q}_j\gamma^{\mu}iD_{\mu}q_j - (m_jq^{\dagger}_{Lj}q_{Rj}+h.c.)\right]##?
I've seen both and I'm assuming the longer one is more complete somehow, but in those cases where the short version is being used, there's not even a mention of the missing term.
##\mathcal{L}=-\frac{1}{4}G^{a}_{\mu\nu}G^{a\mu\nu}+\sum\limits_{j=1}^n \left[\bar{q}_j\gamma^{\mu}iD_{\mu}q_j - (m_jq^{\dagger}_{Lj}q_{Rj}+h.c.)\right]+\frac{\theta g^2}{32\pi^2}G^{a}_{\mu\nu}\widetilde{G}^{a\mu\nu}##
Why is it so often quoted as just
##\mathcal{L}=-\frac{1}{4}G^{a}_{\mu\nu}G^{a\mu\nu}+\sum\limits_{j=1}^n \left[\bar{q}_j\gamma^{\mu}iD_{\mu}q_j - (m_jq^{\dagger}_{Lj}q_{Rj}+h.c.)\right]##?
I've seen both and I'm assuming the longer one is more complete somehow, but in those cases where the short version is being used, there's not even a mention of the missing term.