- #1
Another1
- 40
- 0
\(\displaystyle g(x,t) = e^{(\frac{x}{2})(t-\frac{1}{t})}=\sum_{n=-\infty}^{\infty}J_{n}(x)t^{n}\)
and
\(\displaystyle \left| J_{0}(x) \right|\le 1 \) and \(\displaystyle \left| J_{n}(x) \right|\le \frac{1}{\sqrt{2}} \)
how to show that
1=\(\displaystyle (J_{0}(x))^{2}+2(J_{1}(x))^{2}+2(J_{2}(x))^{2}+...\)
I don't have idea
and
\(\displaystyle \left| J_{0}(x) \right|\le 1 \) and \(\displaystyle \left| J_{n}(x) \right|\le \frac{1}{\sqrt{2}} \)
how to show that
1=\(\displaystyle (J_{0}(x))^{2}+2(J_{1}(x))^{2}+2(J_{2}(x))^{2}+...\)
I don't have idea
Last edited: