- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
For a prime $p$ we define $\mathbb{F}_p:=\mathbb{Z}/p\mathbb{Z}$.
Let $\mathbb{K}\in \{\mathbb{F}_2, \mathbb{F}_3, \mathbb{F}_5\}$ and let \begin{equation*}a=\begin{pmatrix}0 & 1 & 0 & 5 \\ 1 & 0 & 2 & 3 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0\end{pmatrix}\in M_4(\mathbb{K})\end{equation*}
For a prime $p$ we define $\mathbb{F}_p:=\mathbb{Z}/p\mathbb{Z}$.
Let $\mathbb{K}\in \{\mathbb{F}_2, \mathbb{F}_3, \mathbb{F}_5\}$ and let \begin{equation*}a=\begin{pmatrix}0 & 1 & 0 & 5 \\ 1 & 0 & 2 & 3 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0\end{pmatrix}\in M_4(\mathbb{K})\end{equation*}
- Determine $\text{spe}(\phi_a)$ and $\dim \text{Eig}(\lambda, \phi_a)$ for all $\lambda \in \text{spe}(\phi_a)$.
- Is there a basis $B$ of $\mathbb{K}^4$, such that each basis vector is an eigenvector, i.e. is there a basis $B$ of $\mathbb{K}^4$ such that $M_B(\phi_a)$ is a diagonal matrix.
- The spectrum is the set of all eigenvalues. The spectrrum of $\phi_a$ is the spectrum of $a$. Is that correct? The characteristic polynomial is \begin{align*}\det (a-\lambda u_4)=0 &\Rightarrow \begin{vmatrix}-\lambda & 1 & 0 & 5 \\ 1 & -\lambda & 2 & 3 \\ 0 & 0 & -\lambda & -1 \\ 0 & 0 & 1 & -\lambda\end{vmatrix}=0 \\ & \Rightarrow (-\lambda)\cdot \begin{vmatrix} -\lambda & 2 & 3 \\ 0 & -\lambda & -1 \\ 0 & 1 & -\lambda\end{vmatrix}-1\cdot \begin{vmatrix} 1 & 0 & 5 \\ 0 & -\lambda & -1 \\ 0 & 1 & -\lambda\end{vmatrix}=0 \\ & \Rightarrow (-\lambda)\cdot (-\lambda)\cdot \begin{vmatrix} -\lambda & -1 \\ 1 & -\lambda\end{vmatrix}-1\cdot 1\cdot \begin{vmatrix} -\lambda & -1 \\ 1 & -\lambda\end{vmatrix} =0 \\ & \Rightarrow \lambda^2 \cdot \left [(-\lambda)^2-1\cdot (-1)\right ]- \left [(-\lambda)^2-1\cdot (-1)\right ]=0\\ & \Rightarrow \left (\lambda^2 -1\right )\cdot \left (\lambda^2+1\right )=0\end{align*} Therefore we have that $\text{spe}(\phi_a)=\left \{-1,1, -i,i\right\}$. Is that correct ?
Last edited by a moderator: