- #1
docnet
- 799
- 487
- Homework Statement
- please see below
- Relevant Equations
- please see below
Theorem 1: There exists at most one solution ##u\in C^2(\bar{\Omega})## of the Dirichlet boundary value problem.
Proof:
(1) We assume there is a second solution ##\tilde{u}## of the Dirichlet boundary value problem. We compute $$\Delta v=\Delta (u-\tilde{u})\Rightarrow -\Delta u + \Delta \tilde{u}\Rightarrow f-f=0$$
and $$v=u-\tilde{u}\Rightarrow g-g=0$$
(2) So the Dirichlet problem satisfied by ##v=u-\tilde{u}## is
\begin{equation}
\begin{cases}
-\Delta v=0 \quad \text{in}\quad \Omega\\
\quad v=0 \quad\text{on}\quad\partial \Omega\\
\end{cases}
\end{equation}(3) To deduce ##\int_\Omega |Dv(x)|^2dx=0## we integrate ##v\Delta v## over ##\Omega##
$$\int_\Omega v\Delta v dx= \int_\Omega (u-\tilde{u})\Delta (u - \tilde{u})dx$$
using integration by parts
$$=(u-\tilde{u})\int_\Omega \Delta (u-\tilde{u})dx-\int_\Omega\Big[\int_\Omega D(u-\tilde{u})dx\times D(u-\tilde{u})\Big]dx$$
$$\Rightarrow vDv-\int_\Omega v\Delta v dx= \int_\Omega |Dv(x)|^2dx$$ Then setting ##v= 0## and ##\Delta v = 0##
$$\int_\Omega |Dv(x)|^2dx=0$$ (4) ##v=0## implies uniqueness for the Dirichlet problem because ##u=\tilde{u}##
(5) we need the assumption that ##\partial \Omega\in C^1## to define ##\nu## which be evaluated at a cusp or a discontinuity.
(6) We know that $$v\in C^{\infty}_c(\Omega)$$ and ##v## has compact support in ##\Omega##. $$u+sv\in C^2(\bar{\Omega})$$ and in ##\partial \Omega## $$u+sv=g$$ It follows $$u_s=u+sv\in A:=\{w\in C^2(\bar{\Omega})|w=g\quad \text{on} \quad \partial \Omega\}$$
(7) To expand the energy functional ##I[u_s]## in terms of ##s## we make exchanges using ##u_s=u+sv## $$I[u+sv]=\frac{1}{2}\int_\Omega |D(u+sv)(x)|^2dx-\int_\Omega f(u+sv)dx$$
(8) We first differentiate with respect to $s$ and then evaluate at ##s=0## $$\frac{d}{ds}\Big|_{s=0}I[u_s]$$ $$=\frac{d}{ds}\Big[\frac{1}{2}\int_\Omega |D(u+sv)(x)|^2dx-\int_\Omega f(u+sv)dx\Big]_{s=0}$$
$$=\Big[\frac{1}{2}\int_\Omega \frac{d}{ds}|D(u+sv)(x)|^2dx-\int_\Omega \frac{d}{ds}f(u+sv)dx\Big]_{s=0}$$
$$=\Big[\int_\Omega D(u+sv)(x)\Delta (u+sv)v dx-\int_\Omega fvdx\Big]_{s=0}$$ $$\Rightarrow \int_\Omega fv dx-\int_\Omega fvdx=0$$(9) ##u## being a minimizer implies that $$\frac{d}{ds}\Big|_{s=0}I[u_s]=0$$ because ##s=0## is a point of extremum of ##I[u_s]## so the derivative w.r.t ##s## is zero at ##s=0## which is also where ##u_s=u##.
(10) We know from part (4) $$v=0$$ and from the Dirichlet problem $$-\Delta u-f=0$$ in $\Omega$. It follows that
$$0=\int_\Omega (-\Delta u - f)vdx$$
\textbf{Lemma 3:} suppose ##w\in C^0(\Omega)##. If we have for all ##\varphi \in C^\infty_c(\Omega)## the relation
$$\int_\Omega w\varphi dx=0$$then we have ##w=0## in ##\Omega##.
(11) from part (10) we have
$$0=\int_\Omega (-\Delta u - f)vdx$$
which indicates, by Lemma 3
$$-\Delta u-f=0 \quad \text{in} \quad \Omega$$
it follows that
$$-\Delta u = f\quad \text{in} \quad \Omega$$