- #1
Philip Land
- 56
- 3
Hi!
When we want to look at different singular points for e.g Bessel's eq. $$u´´(x) + \frac{u'(x)}{x} + (1- \frac{n^2}{x^2})u(x)$$.
We usually evaluate the equation letting x= 1/z. But I don't algebraically see how such a substitution ends up with $$w´´(z) +( \frac{2}{z}- \frac{1}{z^2})z*w'(z) + \frac{1}{z^4}(1- n^2 z^2)w(z)$$.
Letting x= 1/z, and derive both sides gives ##1/z^2 z'## but I simply don't know how to go from u(x) to w(z) which is very central and should be very basic and just one microstep in long calculations lol.
When we want to look at different singular points for e.g Bessel's eq. $$u´´(x) + \frac{u'(x)}{x} + (1- \frac{n^2}{x^2})u(x)$$.
We usually evaluate the equation letting x= 1/z. But I don't algebraically see how such a substitution ends up with $$w´´(z) +( \frac{2}{z}- \frac{1}{z^2})z*w'(z) + \frac{1}{z^4}(1- n^2 z^2)w(z)$$.
Letting x= 1/z, and derive both sides gives ##1/z^2 z'## but I simply don't know how to go from u(x) to w(z) which is very central and should be very basic and just one microstep in long calculations lol.