- #1
timscully
- 5
- 0
1. Variables
Given a generalized basis in three dimensions: [tex]e_{1},e_{2},e_{3}[/tex] and the standard Kronecker delta [tex]\delta_{ij}[/tex], and using Einstein summation.
With the vector [tex]\textbf{x},\textbf{y},\textbf{z}[/tex] I'm trying to simplify this problem:
2. Problem
[tex]\delta_{il} . \delta_{jm} . x_{j}[/tex]
3. My attempt
[tex]\delta_{il}.\delta_{jm} . \textbf{x} . e_{j}
= (e_{i}. e_{l}) . (e_{j} . e_{m}) . \textbf{x} . e_{j}
= (e_{j}. e_{j}) . (e_{l} . e_{m} . e_{j}) . \textbf{x}
= 1 . (e_{l} . e_{m} . e_{j}) . \textbf{x} [/tex]
Surely this leads to [tex]\delta_{il} . \delta_{jm} . x_{j} = 0[/tex] as [tex]e_{l} , e_{m} , e_{j}[/tex] are all orthagonal ?
Ultimately I'm trying to prove that
[tex](\delta_{il} . \delta_{jm} - \delta_{jl} . \delta_{im}).x_{j}.y_{l}.z_{m}
= y_{i}.x_{j}.z_{j} - z_{i}.x_{j}.y_{j}[/tex]
Given a generalized basis in three dimensions: [tex]e_{1},e_{2},e_{3}[/tex] and the standard Kronecker delta [tex]\delta_{ij}[/tex], and using Einstein summation.
With the vector [tex]\textbf{x},\textbf{y},\textbf{z}[/tex] I'm trying to simplify this problem:
2. Problem
[tex]\delta_{il} . \delta_{jm} . x_{j}[/tex]
3. My attempt
[tex]\delta_{il}.\delta_{jm} . \textbf{x} . e_{j}
= (e_{i}. e_{l}) . (e_{j} . e_{m}) . \textbf{x} . e_{j}
= (e_{j}. e_{j}) . (e_{l} . e_{m} . e_{j}) . \textbf{x}
= 1 . (e_{l} . e_{m} . e_{j}) . \textbf{x} [/tex]
Surely this leads to [tex]\delta_{il} . \delta_{jm} . x_{j} = 0[/tex] as [tex]e_{l} , e_{m} , e_{j}[/tex] are all orthagonal ?
Ultimately I'm trying to prove that
[tex](\delta_{il} . \delta_{jm} - \delta_{jl} . \delta_{im}).x_{j}.y_{l}.z_{m}
= y_{i}.x_{j}.z_{j} - z_{i}.x_{j}.y_{j}[/tex]