- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
We consider the exponential distribution.
I want to show that $$\mathbb{P}\left (\left |X-\frac{1}{\lambda}\right |\leq \lambda \right )\geq \frac{\lambda^4-1}{\lambda^4}$$
I have shown so far that \begin{align*}\mathbb{P}\left (\left |X-\frac{1}{\lambda}\right |\leq \lambda \right )&=\mathbb{P}\left (\frac{1-\lambda^2}{\lambda} \leq X\leq \frac{1+\lambda^2}{\lambda}\right ) \\ & =F\left (\frac{1+\lambda^2}{\lambda}\right )-F\left (\frac{1-\lambda^2}{\lambda}\right )=e^{-1+\lambda^2}-e^{-1-\lambda^2}\end{align*} Is this correct? How could we continue? (Wondering)
We consider the exponential distribution.
I want to show that $$\mathbb{P}\left (\left |X-\frac{1}{\lambda}\right |\leq \lambda \right )\geq \frac{\lambda^4-1}{\lambda^4}$$
I have shown so far that \begin{align*}\mathbb{P}\left (\left |X-\frac{1}{\lambda}\right |\leq \lambda \right )&=\mathbb{P}\left (\frac{1-\lambda^2}{\lambda} \leq X\leq \frac{1+\lambda^2}{\lambda}\right ) \\ & =F\left (\frac{1+\lambda^2}{\lambda}\right )-F\left (\frac{1-\lambda^2}{\lambda}\right )=e^{-1+\lambda^2}-e^{-1-\lambda^2}\end{align*} Is this correct? How could we continue? (Wondering)