- #1
cbarker1
Gold Member
MHB
- 349
- 23
Directions: Use a log table to solve for x:
${2.884}^{x}=0.01439$
$x*\log\left({2.884}\right)=\log\left({0.01439}\right)$
$x=\frac{\log\left({0.01439}\right)}{\log\left({2.884}\right)}$ is the exact answer.
The solution to the problem is -4.004 in the back of the book.
To evaluate the logarithms with table:
$\log\left({.01439}\right)\equiv\log\left({1.439}\right)-2, where \log\left({1.439}\right)=.15806$
$-2.15806, 8.15806-10$
$\log\left({2.884}\right)=.46000$
$x=\frac{-2.15806}{.46000}$ drop the negative sign to compute the logarithms.
$\log\left({\frac{2.15806}{.46}}\right)=\log\left({2.15806}\right)-\log\left({.46}\right)$
$\log\left({2.15806}\right)=.3340512$
$.3340512, 10.3340512-10$
$\log\left({.4600}\right)\equiv\log\left({4.600}\right)-1, where \log\left({4.600}\right)=.66276$
$-1.66276, 9.66276-10$
Now, I need some help to subtract the correct values of $\log\left({2.15806}\right)$ and $\log\left({.46000}\right)$ to get the answer of .60249 in the log table.Thanks for the help
CBarker1
${2.884}^{x}=0.01439$
$x*\log\left({2.884}\right)=\log\left({0.01439}\right)$
$x=\frac{\log\left({0.01439}\right)}{\log\left({2.884}\right)}$ is the exact answer.
The solution to the problem is -4.004 in the back of the book.
To evaluate the logarithms with table:
$\log\left({.01439}\right)\equiv\log\left({1.439}\right)-2, where \log\left({1.439}\right)=.15806$
$-2.15806, 8.15806-10$
$\log\left({2.884}\right)=.46000$
$x=\frac{-2.15806}{.46000}$ drop the negative sign to compute the logarithms.
$\log\left({\frac{2.15806}{.46}}\right)=\log\left({2.15806}\right)-\log\left({.46}\right)$
$\log\left({2.15806}\right)=.3340512$
$.3340512, 10.3340512-10$
$\log\left({.4600}\right)\equiv\log\left({4.600}\right)-1, where \log\left({4.600}\right)=.66276$
$-1.66276, 9.66276-10$
Now, I need some help to subtract the correct values of $\log\left({2.15806}\right)$ and $\log\left({.46000}\right)$ to get the answer of .60249 in the log table.Thanks for the help
CBarker1
Last edited: