MHB Exponential Equation solve 54⋅2^(2x)=72^x⋅√0.5

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Exponential
AI Thread Summary
The exponential equation 54⋅2^(2x)=72^x⋅√0.5 is analyzed, with the goal of solving for x without using logarithms. The discussion highlights the need to equate the exponents of both sides, leading to the equations 2x + 1 = x - 1/2 and 3 = 2x. Initial attempts reveal inconsistencies in the solutions derived from these equations. However, a corrected approach simplifies the equation to show that 18^3 = 18^(2x), resulting in the solution x = 3/2. The final answer is confirmed as 3/2, resolving the problem.
Yankel
Messages
390
Reaction score
0
Hello all,

I need assistance in solving this exponential equation.

\[54\cdot 2^{2x}=72^{x}\cdot \sqrt{0.5}\]

The final answer should be 3/2.

My strategy was to try and bring to a state where the exponents are equal. We know that 54 is 6 times 9. We also know 72 is 8 times 9. The solution probably involves the fact that 9 appears in both numbers.

Can you kindly assist ? Oh, one more thing, important thing. The use of logarithms is forbidden... :-)

Thank you .
 
Mathematics news on Phys.org
Yankel said:
Hello all,

I need assistance in solving this exponential equation.

\[54\cdot 2^{2x}=72^{x}\cdot \sqrt{0.5}\]

The final answer should be 3/2.

My strategy was to try and bring to a state where the exponents are equal. We know that 54 is 6 times 9.
More to the point, 54 is 2 times 27: 54= 2(3^3)

We also know 72 is 8 times 9.
Yes, and that is 72= (2^3)(3^2). Of course \sqrt{0.5}= \frac{1}{\sqrt{2}}= 2^{-1/2}

The solution probably involves the fact that 9 appears in both numbers.

Can you kindly assist ? Oh, one more thing, important thing. The use of logarithms is forbidden... :-)

Thank you .
54(2^{2x})= 2(3^3)(2^{2x})= 2^{2x+1}(3^3) and 72^x\sqrt{0.5}= 2^x(3^{2x})2^{-1/2}= 2^{x- 1/2}3^{2x}

54(2^{2x})=72^x\sqrt{0.5} is the same as
2^{2x+1}(3^3)= 2^{x- 1/2}3^{2x}

But now we have a problem! In order for those to be equal the exponents of both 2 and 3 must be the same on each side. We must ave both 2x+ 1= x- 1/2 and 3= 2x. To solve 2x+ 1= x- 1/2, subtract x and 1 from both sides: x= -3/2. To solve 3= 2x divide both sides by 2: x= 3/2. Those are NOT the same! There is no value of x that satisfies this.
 
Thank you very much.

I think that you have a small mistake with the exponents at the beginning but the general approach helped me get to the correct solution.
 
$$54\cdot 2^{2x}=72^{x}\cdot \sqrt{0.5}$$

$$54\cdot 4^x=18^{x}\cdot4^x\cdot\sqrt{\frac12}$$

$$54=18^x\cdot\sqrt{\frac12}$$

$$2\cdot54^2=18^{2x}$$

$$2\cdot3^2\cdot18^2=18^{2x}$$

$$18^3=18^{2x}\implies x=\frac32$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
1
Views
1K
Replies
6
Views
1K
Replies
7
Views
1K
Replies
2
Views
1K
Replies
2
Views
2K
Replies
3
Views
1K
Replies
2
Views
2K
Back
Top