- #1
sara_87
- 763
- 0
Homework Statement
Show that the constitutive equation for an elastic solid can be expressed in the form:
Tij=[tex]\frac{1}{2}[/tex][tex]\frac{\rho}{\rho0}[/tex][tex]\frac{\partial(xi)}{\partial(XR)}[/tex][tex]\frac{\partial(xj)}{\partial(XS)}[/tex]([tex]\frac{\partial(W)}{\partial(\gammaRS)}[/tex]+[tex]\frac{\partial(W)}{\partial(\gammaSR)}[/tex])
Homework Equations
A constitutive equation for finite elastic solid is:
Tij=[tex]\frac{\rho}{\rho0}[/tex][tex]\frac{\partial(xi)}{\partial(XR)}[/tex][tex]\frac{\partial(xj)}{\partial(XS)}[/tex]([tex]\frac{\partial(W)}{\partial(CRS)}[/tex]+[tex]\frac{\partial(W)}{\partial(CSR)}[/tex])
where [tex]\gamma[/tex]=[tex]\frac{1}{2}[/tex](C-I) (I is the identity matrix)
The Attempt at a Solution
so therefore i have to show that [tex]\frac{\partial(W)}{\partial(CRS)}[/tex]+[tex]\frac{\partial(W)}{\partial(CSR)}[/tex]=[tex]\frac{1}{2}[/tex]([tex]\frac{\partial(W)}{\partial(\gammaRS)}[/tex]+[tex]\frac{\partial(W)}{\partial(\gammaSR)}[/tex])
using the fact that [tex]\gamma[/tex]=[tex]\frac{1}{2}[/tex](C-I),
[tex]\frac{\partial(W)}{\partial(CRS)}[/tex]+[tex]\frac{\partial(W)}{\partial(CSR)}[/tex]=[tex]\frac{1}{2}[/tex]([tex]\frac{\partial(W)}{\partial(\gammaRS)+(1/2)I}[/tex]+[tex]\frac{\partial(W)}{\partial(\gammaSR)+(1/2)I}[/tex])
so what do i do with the (1/2)I, did i make a mistake?