- #1
KataruZ98
- 27
- 3
The total kinetic energy of a double pendulum can be calculated through the formule reported in the following article: https://dassencio.org/33
This works if the double pendulum in question is formed by two masses connected to each other and — one of them — to the point of origin by a "massless" rod. However, I'm interested in expanding this formula to cover systems where two bodies of more complex shapes are the swinging parts of the "double pendulum", if it possible that is.
Say I have a Cartesian plane, and at the origin point there's a cylinder of height H and radius R with the y-axis passing through the center of mass. On top of it is a cone placed upside down, with the center of mass also passing through the y-axis. Said cone has radius r and height h.
The cylinder is then tipped to the right, forming now an angle θ1 with the x-axis. As a consequence, the cone swings as well, producing an angle θ2 respect to the horizontal. It all happens within time t. How can I work out the Lagrangian from the data given?
This works if the double pendulum in question is formed by two masses connected to each other and — one of them — to the point of origin by a "massless" rod. However, I'm interested in expanding this formula to cover systems where two bodies of more complex shapes are the swinging parts of the "double pendulum", if it possible that is.
Say I have a Cartesian plane, and at the origin point there's a cylinder of height H and radius R with the y-axis passing through the center of mass. On top of it is a cone placed upside down, with the center of mass also passing through the y-axis. Said cone has radius r and height h.
The cylinder is then tipped to the right, forming now an angle θ1 with the x-axis. As a consequence, the cone swings as well, producing an angle θ2 respect to the horizontal. It all happens within time t. How can I work out the Lagrangian from the data given?