- #1
Dustinsfl
- 2,281
- 5
A weight of \(50\) N is suspended from a spring of stiffness \(4000\) N/m and is subjected to a harmonic force of amplitude \(60\) N and frequency \(6\) Hz.
Since \(W = mg = 50\), we have that the mass, \(m = 5.10204\), and we know that \(f = \frac{\omega}{2\pi} = 6\) so \(\omega = 12\pi\). The harmonic forcing term is then
\[
F(t) = 60\cos(12\pi t)
\]
and our equation of motion is
\[
\ddot{x} + \frac{4000}{5.10204}x = \frac{60}{5.10204}\cos(12\pi t).
\]
Solving the transient and steady solution, we obtain
\[
x(t) = A\cos(28t) + B\sin(28t) - 0.0184551\cos(12\pi t)
\]
How do I determine the extension of spring from the suspended mass? This value would then be \(x(0) = x_0\). Additionally, I will assume any motion starts from rest so \(\dot{x}(0) = 0\) which leads to \(B = 0\) and \(A\) can be defined as \(x_0 - \frac{F_0}{k - m\omega^2}\) where \(\omega = 12\pi\)
\[
x(t) = (x_0 + 0.0184551)\cos(28t) - 0.0184551\cos(12\pi t)
\]
Would the extension of the spring simply be, \(F = kx\) where \(F = 50\) so
\[
x = \frac{F}{k} = \frac{1}{80}\mbox{?}
\]
Since \(W = mg = 50\), we have that the mass, \(m = 5.10204\), and we know that \(f = \frac{\omega}{2\pi} = 6\) so \(\omega = 12\pi\). The harmonic forcing term is then
\[
F(t) = 60\cos(12\pi t)
\]
and our equation of motion is
\[
\ddot{x} + \frac{4000}{5.10204}x = \frac{60}{5.10204}\cos(12\pi t).
\]
Solving the transient and steady solution, we obtain
\[
x(t) = A\cos(28t) + B\sin(28t) - 0.0184551\cos(12\pi t)
\]
How do I determine the extension of spring from the suspended mass? This value would then be \(x(0) = x_0\). Additionally, I will assume any motion starts from rest so \(\dot{x}(0) = 0\) which leads to \(B = 0\) and \(A\) can be defined as \(x_0 - \frac{F_0}{k - m\omega^2}\) where \(\omega = 12\pi\)
\[
x(t) = (x_0 + 0.0184551)\cos(28t) - 0.0184551\cos(12\pi t)
\]
Would the extension of the spring simply be, \(F = kx\) where \(F = 50\) so
\[
x = \frac{F}{k} = \frac{1}{80}\mbox{?}
\]
Last edited: