- #1
ergospherical
- 1,055
- 1,347
i) Let ##\pi : E \rightarrow M## be a vector bundle with a connection ##D## and let ##D'## be the gauge transform of ##D## given by ##D_v's = gD_v(g^{-1}s)##. Show that the exterior covariant derivative of ##E##-valued forms ##\eta## transforms like ##d_{D'} \eta = gd_D(g^{-1}\eta)##.
ii) Show that the exterior derivative of any ##\mathrm{End}(E)##-valued form ##\eta## transforms as ##d_{D'} \eta = g\eta g^{-1} d_D (g^{-1}\eta g)##.
i) Write ##\eta = s_I \otimes dx^I## where the ##s_I## are sections of the bundle ##\pi##. Then\begin{align*}
d_{D'} \eta &= d_{D'} s_I \wedge dx^I + s_I \otimes d^2 x^I \\
&= d_{D'} s_I \wedge dx^I \\
&= (D_{\mu} s_I) \otimes dx^{\mu} \wedge dx^I \\
&= gD_{\mu} (g^{-1}s_I) \otimes dx^{\mu} \wedge dx^I
\end{align*}Meanwhile ##g^{-1} \eta = g^{-1} s_I \wedge dx^I##, so\begin{align*}
g d_D(g^{-1} \eta) &= d_D (g^{-1}s_I) \wedge dx^I \\
&= g D_{\mu}(g^{-1}s_I) \otimes dx^{\mu} \wedge dx^I
\end{align*}ii) Write the connection as ##D = D^0 + A## for some ##\mathrm{End}(V)##-valued 1-form ##A##, then ##d_D \eta = d\eta + [A,\eta]##. Write ##\eta = s_I \otimes dx^I##. Then\begin{align*}
d_{D'} \eta = d\eta + [A', \eta]
\end{align*}How do I expand the expression ##d_D (g^{-1}\eta g)## on the right hand side? Can I view ##g^{-1} \eta g = (g^{-1} \eta) \wedge g## and write something like \begin{align*}
d_D(g^{-1}\eta g) = d_D(g^{-1} \eta) g + (-1)^p (g^{-1} \eta) \wedge d_D g
\end{align*}Thanks.
ii) Show that the exterior derivative of any ##\mathrm{End}(E)##-valued form ##\eta## transforms as ##d_{D'} \eta = g\eta g^{-1} d_D (g^{-1}\eta g)##.
i) Write ##\eta = s_I \otimes dx^I## where the ##s_I## are sections of the bundle ##\pi##. Then\begin{align*}
d_{D'} \eta &= d_{D'} s_I \wedge dx^I + s_I \otimes d^2 x^I \\
&= d_{D'} s_I \wedge dx^I \\
&= (D_{\mu} s_I) \otimes dx^{\mu} \wedge dx^I \\
&= gD_{\mu} (g^{-1}s_I) \otimes dx^{\mu} \wedge dx^I
\end{align*}Meanwhile ##g^{-1} \eta = g^{-1} s_I \wedge dx^I##, so\begin{align*}
g d_D(g^{-1} \eta) &= d_D (g^{-1}s_I) \wedge dx^I \\
&= g D_{\mu}(g^{-1}s_I) \otimes dx^{\mu} \wedge dx^I
\end{align*}ii) Write the connection as ##D = D^0 + A## for some ##\mathrm{End}(V)##-valued 1-form ##A##, then ##d_D \eta = d\eta + [A,\eta]##. Write ##\eta = s_I \otimes dx^I##. Then\begin{align*}
d_{D'} \eta = d\eta + [A', \eta]
\end{align*}How do I expand the expression ##d_D (g^{-1}\eta g)## on the right hand side? Can I view ##g^{-1} \eta g = (g^{-1} \eta) \wedge g## and write something like \begin{align*}
d_D(g^{-1}\eta g) = d_D(g^{-1} \eta) g + (-1)^p (g^{-1} \eta) \wedge d_D g
\end{align*}Thanks.