- #1
ergospherical
- 1,072
- 1,365
- Homework Statement
- Exercise 2.33 of Shapiro & Baumgarte. In Kerr-Schild coords, ##ds^2 = (\eta_{ab} + 2H l_a l_b) dx^a dx^b## where the null vector ##l_a## has Cartesian components ##l_t = 1## and ##l_i = x^i/r## and ##H := M/r##. Identify the lapse, shift, spatial metric and show that the extrinsic curvature is$$K_{ij} = \frac{2H\alpha}{r}(\delta_{ij} - (2+H)l_i l_j)$$
- Relevant Equations
- ADM equations
I can think of a couple of ways to go about determining the extrinsic curvature, but the most direct seems to be straight from the ADM equation for the evolution of the spatial metric,$$\partial_t \gamma_{ij} = \beta^m \partial_m \gamma_{ij} + \gamma_{m(i} \partial_{j)} \beta^m - 2\alpha K_{ij}$$From the form of the metric in coordinates adapted to the 3+1 split, it's easy to write down the lapse ##\alpha = 1##, shift ##\beta^i = 2Hx^i/r## and the spatial metric ##\gamma_{ij} = \delta_{ij} + 2H x^i x^j/r^2##. I find the following terms:\begin{align*}
\beta^m \partial_m \gamma_{ij} &= -4H^2 l_i l_j \\
\gamma_{mi} \partial_j \beta^m &= \frac{2H}{r}(\delta_{ij} - 2(2+H)l_i l_j)
\end{align*}The spatial metric being time independent means that$$2\alpha K_{ij} = \beta^m \partial_m \gamma_{ij} + \gamma_{m(i} \partial_{j)} \beta^m$$The expressions computed above don't give the quoted result for ##K_{ij}## (as far as I can tell). Can anyone spot my error?
\beta^m \partial_m \gamma_{ij} &= -4H^2 l_i l_j \\
\gamma_{mi} \partial_j \beta^m &= \frac{2H}{r}(\delta_{ij} - 2(2+H)l_i l_j)
\end{align*}The spatial metric being time independent means that$$2\alpha K_{ij} = \beta^m \partial_m \gamma_{ij} + \gamma_{m(i} \partial_{j)} \beta^m$$The expressions computed above don't give the quoted result for ##K_{ij}## (as far as I can tell). Can anyone spot my error?