- #1
fishturtle1
- 394
- 82
- Homework Statement
- i) Prove that a group is abelian iff ##f : G \rightarrow G## defined as ##f(a) = a^{-1}## is a homomorphism.
ii) Let ##f : G \rightarrow G## be an isomorphism from a finite group ##G## to itself. If ##f## has no nontrivial fixed points (i.e. ##f(x) = x \Rightarrow x = e##) and if ##f \circ f## is the identity function, then for all ##x \in G##, ##f(x) = x^{-1}##, and ##G## is abelian. [Hint: Show for ##g \in G##, there exists ##x \in G## such that ##g = xf(x)^{-1}##]
- Relevant Equations
- .
i) Proof: Let ##a, b \in G##
##(\Rightarrow)## If ##G## is abelian, then
##
\begin{align*}
f(a)f(b) &= a^{-1}b^{-1} \\
&= b^{-1}a^{-1} \\
&= (ab)^{-1} \\
&= f(ab) \\
\end{align*}
##
So ##f## is a homomorphism.
##(\Leftarrow)## If ##f## is a homomorphism, then
##
\begin{align*}
f(a^{-1})f(b^{-1}) &= f(a^{-1}b^{-1}) \\
ab &= (a^{-1}b^{-1})^{-1} \\
ab &= ba \\
\end{align*}
##
So ##G## is abelian. []
For ii) I'm stuck. I tried to show the hint first: Let ##g \in G##. Then there is ##x \in G## such that ##f(x) = g##. We have
$$g = f(x) = f(xxx^{-1}) = f(x)f(x)f(x)^{-1} = f(x)^2f(x)^{-1}$$
and I'm trying to show ##g = xf(x)^{-1}##. I know I'm not using the fact that there's no nontrivial fixed points, but I'm not sure how. How to proceed?
##(\Rightarrow)## If ##G## is abelian, then
##
\begin{align*}
f(a)f(b) &= a^{-1}b^{-1} \\
&= b^{-1}a^{-1} \\
&= (ab)^{-1} \\
&= f(ab) \\
\end{align*}
##
So ##f## is a homomorphism.
##(\Leftarrow)## If ##f## is a homomorphism, then
##
\begin{align*}
f(a^{-1})f(b^{-1}) &= f(a^{-1}b^{-1}) \\
ab &= (a^{-1}b^{-1})^{-1} \\
ab &= ba \\
\end{align*}
##
So ##G## is abelian. []
For ii) I'm stuck. I tried to show the hint first: Let ##g \in G##. Then there is ##x \in G## such that ##f(x) = g##. We have
$$g = f(x) = f(xxx^{-1}) = f(x)f(x)f(x)^{-1} = f(x)^2f(x)^{-1}$$
and I'm trying to show ##g = xf(x)^{-1}##. I know I'm not using the fact that there's no nontrivial fixed points, but I'm not sure how. How to proceed?
Last edited: