- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hey again! (Blush)
I am looking at the following exercise:
Let $$f_n(x)= \begin{cases}
0,x< \frac{1}{n+1} \text{ or } \frac{1}{n}<x \\
\sin^2( \frac{ \pi}{x}), \frac{1}{n+1} \leq x \leq \frac{1}{n}
\end{cases}.$$
Prove that $(f_n)$ converges pointwise to a continuous $f$ in $ \mathbb{R}$.
Which is this $f$ ? Does $f_n \to f$ uniformly in $\mathbb{R}$ ?
Can I show that $(f_n)$ converges pointwise to $f=0$ like that?
$ \displaystyle \forall x<\frac{1}{n+1}$ or $x>\dfrac{1}{n}$: $f_n(x)=0 \to 0$
$ \displaystyle \forall \frac{1}{n+1} \leq x \leq \frac{1}{n} \Rightarrow n \leq \frac{1}{x} \leq n+1 \Rightarrow \pi n \leq \frac{\pi}{x} \leq \pi(n+1) \Rightarrow $
$ \displaystyle \sin^2( \pi n) \leq \sin^2 ( \frac{ \pi}{x}) \leq \sin^2( \pi(n+1)) \Rightarrow$
$\displaystyle \lim_{n \to + \infty} \sin^2( \pi n) \leq \lim_{n \to +\infty} \sin^2 ( \frac{ \pi}{x}) \leq \lim_{n \to +\infty} \sin^2( \pi(n+1)) \Rightarrow 0 \leq f \leq 0 \Rightarrow f=0$
I am looking at the following exercise:
Let $$f_n(x)= \begin{cases}
0,x< \frac{1}{n+1} \text{ or } \frac{1}{n}<x \\
\sin^2( \frac{ \pi}{x}), \frac{1}{n+1} \leq x \leq \frac{1}{n}
\end{cases}.$$
Prove that $(f_n)$ converges pointwise to a continuous $f$ in $ \mathbb{R}$.
Which is this $f$ ? Does $f_n \to f$ uniformly in $\mathbb{R}$ ?
Can I show that $(f_n)$ converges pointwise to $f=0$ like that?
$ \displaystyle \forall x<\frac{1}{n+1}$ or $x>\dfrac{1}{n}$: $f_n(x)=0 \to 0$
$ \displaystyle \forall \frac{1}{n+1} \leq x \leq \frac{1}{n} \Rightarrow n \leq \frac{1}{x} \leq n+1 \Rightarrow \pi n \leq \frac{\pi}{x} \leq \pi(n+1) \Rightarrow $
$ \displaystyle \sin^2( \pi n) \leq \sin^2 ( \frac{ \pi}{x}) \leq \sin^2( \pi(n+1)) \Rightarrow$
$\displaystyle \lim_{n \to + \infty} \sin^2( \pi n) \leq \lim_{n \to +\infty} \sin^2 ( \frac{ \pi}{x}) \leq \lim_{n \to +\infty} \sin^2( \pi(n+1)) \Rightarrow 0 \leq f \leq 0 \Rightarrow f=0$