- #1
Math100
- 802
- 221
- Homework Statement
- Factor the repunit ## R_{6}=111111 ## into a product of primes.
- Relevant Equations
- None.
Consider the repunit ## R_{6}=111111 ##.
Then ## R_{6}=111111=1\cdot 10^{5}+1\cdot 10^{4}+1\cdot 10^{3}+1\cdot 10^{2}+1\cdot 10^{1}+1\cdot 10^{0} ##.
Note that a positive integer ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ## where ## 0\leq a_{k}\leq 9 ## is
divisible by ## 7, 11 ##, and ## 13 ## if and only if ## 7, 11 ##, and ## 13 ## divide the
integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.
This means ## a_{0}=a_{1}=a_{2}=a_{3}=a_{4}=a_{5}=1 ##.
Thus ## M=(100+10+1)-(100+10+1)=0 ##.
Since ## 7, 11 ##, and ## 13 ## divide ## 0 ##, it follows that ## 7, 11 ##, and ## 13 ## divide the repunit ## R_{6} ##.
Observe that the sum of digits in ## R_{6} ## is ## 1+1+1+1+1+1=6 ##.
This means ## 3\mid R_{6} ##.
Thus ## R_{6}=111111=3\cdot 7\cdot 11\cdot 13\cdot 37 ##.
Therefore, a product of primes in ## R_{6} ## is ## 3\cdot 7\cdot 11\cdot 13\cdot 37 ##.
Then ## R_{6}=111111=1\cdot 10^{5}+1\cdot 10^{4}+1\cdot 10^{3}+1\cdot 10^{2}+1\cdot 10^{1}+1\cdot 10^{0} ##.
Note that a positive integer ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ## where ## 0\leq a_{k}\leq 9 ## is
divisible by ## 7, 11 ##, and ## 13 ## if and only if ## 7, 11 ##, and ## 13 ## divide the
integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.
This means ## a_{0}=a_{1}=a_{2}=a_{3}=a_{4}=a_{5}=1 ##.
Thus ## M=(100+10+1)-(100+10+1)=0 ##.
Since ## 7, 11 ##, and ## 13 ## divide ## 0 ##, it follows that ## 7, 11 ##, and ## 13 ## divide the repunit ## R_{6} ##.
Observe that the sum of digits in ## R_{6} ## is ## 1+1+1+1+1+1=6 ##.
This means ## 3\mid R_{6} ##.
Thus ## R_{6}=111111=3\cdot 7\cdot 11\cdot 13\cdot 37 ##.
Therefore, a product of primes in ## R_{6} ## is ## 3\cdot 7\cdot 11\cdot 13\cdot 37 ##.